BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 29994162)

  • 1. A New Unsupervised Approach for Segmenting and Counting Cells in High-Throughput Microscopy Image Sets.
    Riccio D; Brancati N; Frucci M; Gragnaniello D
    IEEE J Biomed Health Inform; 2019 Jan; 23(1):437-448. PubMed ID: 29994162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An automatic method for robust and fast cell detection in bright field images from high-throughput microscopy.
    Buggenthin F; Marr C; Schwarzfischer M; Hoppe PS; Hilsenbeck O; Schroeder T; Theis FJ
    BMC Bioinformatics; 2013 Oct; 14():297. PubMed ID: 24090363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell nuclei and cytoplasm joint segmentation using the sliding band filter.
    Quelhas P; Marcuzzo M; Mendonça AM; Campilho A
    IEEE Trans Med Imaging; 2010 Aug; 29(8):1463-73. PubMed ID: 20525532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale tracking and classification for automatic analysis of cell migration and proliferation, and experimental optimization of high-throughput screens of neuroblastoma cells.
    Harder N; Batra R; Diessl N; Gogolin S; Eils R; Westermann F; König R; Rohr K
    Cytometry A; 2015 Jun; 87(6):524-40. PubMed ID: 25630981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of two automatic cell-counting solutions for fluorescent microscopic images.
    Lojk J; Čibej U; Karlaš D; Šajn L; Pavlin M
    J Microsc; 2015 Oct; 260(1):107-16. PubMed ID: 26098834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Steering the acquisition process and multiparameter analysis of an image].
    BD Bioscience
    Postepy Biochem; 2010; 56(2):209-32. PubMed ID: 20873116
    [No Abstract]   [Full Text] [Related]  

  • 7. Empirical gradient threshold technique for automated segmentation across image modalities and cell lines.
    Chalfoun J; Majurski M; Peskin A; Breen C; Bajcsy P; Brady M
    J Microsc; 2015 Oct; 260(1):86-99. PubMed ID: 26046924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning applications in cell image analysis.
    Kan A
    Immunol Cell Biol; 2017 Jul; 95(6):525-530. PubMed ID: 28294138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contour-Seed Pairs Learning-Based Framework for Simultaneously Detecting and Segmenting Various Overlapping Cells/Nuclei in Microscopy Images.
    Song J; Xiao L; Lian Z
    IEEE Trans Image Process; 2018 Dec; 27(12):5759-5774. PubMed ID: 30028701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving reliability of live/dead cell counting through automated image mosaicing.
    Piccinini F; Tesei A; Paganelli G; Zoli W; Bevilacqua A
    Comput Methods Programs Biomed; 2014 Dec; 117(3):448-63. PubMed ID: 25438936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-free, high-throughput holographic screening and enumeration of tumor cells in blood.
    Singh DK; Ahrens CC; Li W; Vanapalli SA
    Lab Chip; 2017 Aug; 17(17):2920-2932. PubMed ID: 28718848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast unsupervised nuclear segmentation and classification scheme for automatic allred cancer scoring in immunohistochemical breast tissue images.
    Mouelhi A; Rmili H; Ali JB; Sayadi M; Doghri R; Mrad K
    Comput Methods Programs Biomed; 2018 Oct; 165():37-51. PubMed ID: 30337080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An automatic image analysis approach to quantify stained cell cultures.
    Glory E; Derocle G; Ollivier N; Meas-Yedid V; Stamon G; Pinset C; Olivo-Marin JC
    Cell Mol Biol (Noisy-le-grand); 2007 Apr; 53(2):44-50. PubMed ID: 17531139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An unsupervised automatic segmentation algorithm for breast tissue classification of dedicated breast computed tomography images.
    Caballo M; Boone JM; Mann R; Sechopoulos I
    Med Phys; 2018 Jun; 45(6):2542-2559. PubMed ID: 29676025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segmenting time-lapse phase contrast images of adjacent NIH 3T3 cells.
    Chalfoun J; Kociolek M; Dima A; Halter M; Cardone A; Peskin A; Bajcsy P; Brady M
    J Microsc; 2013 Jan; 249(1):41-52. PubMed ID: 23126432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Automatic Segmentation Method Combining an Active Contour Model and a Classification Technique for Detecting Polycomb-group Proteinsin High-Throughput Microscopy Images.
    Gregoretti F; Cesarini E; Lanzuolo C; Oliva G; Antonelli L
    Methods Mol Biol; 2016; 1480():181-97. PubMed ID: 27659985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Counting unstained, confluent cells by modified bright-field microscopy.
    Drey LL; Graber MC; Bieschke J
    Biotechniques; 2013 Jul; 55(1):28-33. PubMed ID: 23834382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DetecTiff: a novel image analysis routine for high-content screening microscopy.
    Gilbert DF; Meinhof T; Pepperkok R; Runz H
    J Biomol Screen; 2009 Sep; 14(8):944-55. PubMed ID: 19641223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated Counting of Cancer Cells by Ensembling Deep Features.
    Liu Q; Junker A; Murakami K; Hu P
    Cells; 2019 Sep; 8(9):. PubMed ID: 31480740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive and Background-Aware GAL4 Expression Enhancement of Co-registered Confocal Microscopy Images.
    Trapp M; Schulze F; Novikov AA; Tirian L; J Dickson B; Bühler K
    Neuroinformatics; 2016 Apr; 14(2):221-33. PubMed ID: 26743993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.