These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 29994218)
1. Development of Amoxicillin-Loaded Electrospun Polyurethane/Chitosan/ $\beta$ -Tricalcium Phosphate Scaffold for Bone Tissue Regeneration. Topsakal A; Uzun M; Ugar G; Ozcan A; Altun E; Oktar FN; Ikram F; Ozkan O; Turkoglu Sasmazel H; Gunduz O IEEE Trans Nanobioscience; 2018 Jul; 17(3):321-328. PubMed ID: 29994218 [TBL] [Abstract][Full Text] [Related]
2. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles. Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379 [TBL] [Abstract][Full Text] [Related]
3. Development of polyamide-6,6/chitosan electrospun hybrid nanofibrous scaffolds for tissue engineering application. Shrestha BK; Mousa HM; Tiwari AP; Ko SW; Park CH; Kim CS Carbohydr Polym; 2016 Sep; 148():107-14. PubMed ID: 27185121 [TBL] [Abstract][Full Text] [Related]
4. Preparation of collagen/polyurethane/knitted silk as a composite scaffold for tendon tissue engineering. Sharifi-Aghdam M; Faridi-Majidi R; Derakhshan MA; Chegeni A; Azami M Proc Inst Mech Eng H; 2017 Jul; 231(7):652-662. PubMed ID: 28347205 [TBL] [Abstract][Full Text] [Related]
5. Chitosan/β-1,3-glucan/calcium phosphate ceramics composites--novel cell scaffolds for bone tissue engineering application. Przekora A; Palka K; Ginalska G J Biotechnol; 2014 Jul; 182-183():46-53. PubMed ID: 24815684 [TBL] [Abstract][Full Text] [Related]
6. Multifaceted Characterization And In Vitro Assessment Of Polyurethane-Based Electrospun Fibrous Composite For Bone Tissue Engineering. Jiang H; Mani MP; Jaganathan SK Int J Nanomedicine; 2019; 14():8149-8159. PubMed ID: 31632024 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of a three-dimensional β-tricalcium-phosphate/gelatin containing chitosan-based nanoparticles for sustained release of bone morphogenetic protein-2: Implication for bone tissue engineering. Bastami F; Paknejad Z; Jafari M; Salehi M; Rezai Rad M; Khojasteh A Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():481-491. PubMed ID: 28024612 [TBL] [Abstract][Full Text] [Related]
8. Electrospun collagen-chitosan-TPU nanofibrous scaffolds for tissue engineered tubular grafts. Huang C; Chen R; Ke Q; Morsi Y; Zhang K; Mo X Colloids Surf B Biointerfaces; 2011 Feb; 82(2):307-15. PubMed ID: 20888196 [TBL] [Abstract][Full Text] [Related]
9. Electrospun biodegradable chitosan based-poly(urethane urea) scaffolds for soft tissue engineering. Vieira T; Carvalho Silva J; Botelho do Rego AM; Borges JP; Henriques C Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109819. PubMed ID: 31349414 [TBL] [Abstract][Full Text] [Related]
10. β-Tricalcium phosphate/poly(glycerol sebacate) scaffolds with robust mechanical property for bone tissue engineering. Yang K; Zhang J; Ma X; Ma Y; Kan C; Ma H; Li Y; Yuan Y; Liu C Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():37-47. PubMed ID: 26249563 [TBL] [Abstract][Full Text] [Related]
11. Reinforcement of freeze-dried chitosan scaffolds with multiphasic calcium phosphate short fibers. Mohammadi Z; Mesgar AS; Rasouli-Disfani F J Mech Behav Biomed Mater; 2016 Aug; 61():590-599. PubMed ID: 27179144 [TBL] [Abstract][Full Text] [Related]
12. A novel squid pen chitosan/hydroxyapatite/β-tricalcium phosphate composite for bone tissue engineering. Shavandi A; Bekhit Ael-D; Sun Z; Ali A; Gould M Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():373-83. PubMed ID: 26117768 [TBL] [Abstract][Full Text] [Related]
13. Preparation of gelatin based porous biocomposite for bone tissue engineering and evaluation of gamma irradiation effect on its properties. Islam MM; Khan MA; Rahman MM Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():648-655. PubMed ID: 25686994 [TBL] [Abstract][Full Text] [Related]
14. Characterization and in vitro evaluation of electrospun chitosan/polycaprolactone blend fibrous mat for skin tissue engineering. Prasad T; Shabeena EA; Vinod D; Kumary TV; Anil Kumar PR J Mater Sci Mater Med; 2015 Jan; 26(1):5352. PubMed ID: 25578706 [TBL] [Abstract][Full Text] [Related]
15. Electrospun oriented gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering. Salifu AA; Lekakou C; Labeed FH J Biomed Mater Res A; 2017 Jul; 105(7):1911-1926. PubMed ID: 28263431 [TBL] [Abstract][Full Text] [Related]
16. Strontium-modified chitosan/montmorillonite composites as bone tissue engineering scaffold. Koç Demir A; Elçin AE; Elçin YM Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():8-14. PubMed ID: 29752122 [TBL] [Abstract][Full Text] [Related]
17. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2. Yoshida T; Miyaji H; Otani K; Inoue K; Nakane K; Nishimura H; Ibara A; Shimada A; Ogawa K; Nishida E; Sugaya T; Sun L; Fugetsu B; Kawanami M J Periodontal Res; 2015 Apr; 50(2):265-73. PubMed ID: 24966062 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction. Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521 [TBL] [Abstract][Full Text] [Related]
19. Preparation and characterization of bionic bone structure chitosan/hydroxyapatite scaffold for bone tissue engineering. Zhang J; Nie J; Zhang Q; Li Y; Wang Z; Hu Q J Biomater Sci Polym Ed; 2014; 25(1):61-74. PubMed ID: 24053536 [TBL] [Abstract][Full Text] [Related]
20. Preparation and characterization of aloe vera blended collagen-chitosan composite scaffold for tissue engineering applications. Jithendra P; Rajam AM; Kalaivani T; Mandal AB; Rose C ACS Appl Mater Interfaces; 2013 Aug; 5(15):7291-8. PubMed ID: 23838342 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]