These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 29994218)
21. Electrospun chitosan-gelatin nanofiberous scaffold: fabrication and in vitro evaluation. Jafari J; Emami SH; Samadikuchaksaraei A; Bahar MA; Gorjipour F Biomed Mater Eng; 2011; 21(2):99-112. PubMed ID: 21654066 [TBL] [Abstract][Full Text] [Related]
22. Polycaprolactone/carboxymethyl chitosan nanofibrous scaffolds for bone tissue engineering application. Sharifi F; Atyabi SM; Norouzian D; Zandi M; Irani S; Bakhshi H Int J Biol Macromol; 2018 Aug; 115():243-248. PubMed ID: 29654862 [TBL] [Abstract][Full Text] [Related]
23. In vitro osteoclast-like and osteoblast cells' response to electrospun calcium phosphate biphasic candidate scaffolds for bone tissue engineering. Wepener I; Richter W; van Papendorp D; Joubert AM J Mater Sci Mater Med; 2012 Dec; 23(12):3029-40. PubMed ID: 22965382 [TBL] [Abstract][Full Text] [Related]
24. Effect of cellulose nanocrystals on scaffolds comprising chitosan, alginate and hydroxyapatite for bone tissue engineering. Shaheen TI; Montaser AS; Li S Int J Biol Macromol; 2019 Jan; 121():814-821. PubMed ID: 30342123 [TBL] [Abstract][Full Text] [Related]
25. Vascularization of repaired limb bone defects using chitosan-β-tricalcium phosphate composite as a tissue engineering bone scaffold. Yang L; Wang Q; Peng L; Yue H; Zhang Z Mol Med Rep; 2015 Aug; 12(2):2343-7. PubMed ID: 25902181 [TBL] [Abstract][Full Text] [Related]
26. Skeletal myotube formation enhanced by electrospun polyurethane carbon nanotube scaffolds. Sirivisoot S; Harrison BS Int J Nanomedicine; 2011; 6():2483-97. PubMed ID: 22072883 [TBL] [Abstract][Full Text] [Related]
27. Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering. Rajzer I; Menaszek E; Kwiatkowski R; Planell JA; Castano O Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():183-90. PubMed ID: 25280695 [TBL] [Abstract][Full Text] [Related]
28. Preparation, characterization and blood compatibility assessment of a novel electrospun nanocomposite comprising polyurethane and ayurvedic-indhulekha oil for tissue engineering applications. Ayyar M; Mani MP; Jaganathan SK; Rathanasamy R Biomed Tech (Berl); 2018 Jun; 63(3):245-253. PubMed ID: 28678733 [TBL] [Abstract][Full Text] [Related]
29. Human osteoblast cytotoxicity study of electrospun polyurethane/calcium chloride ultrafine nanofibers. Nirmala R; Kang HS; El-Newehy MH; Navamathavan R; Park HM; Kim HY J Nanosci Nanotechnol; 2011 Jun; 11(6):4749-56. PubMed ID: 21770101 [TBL] [Abstract][Full Text] [Related]
30. Electrospinning thermoplastic polyurethane-contained collagen nanofibers for tissue-engineering applications. Chen R; Qiu L; Ke Q; He C; Mo X J Biomater Sci Polym Ed; 2009; 20(11):1513-36. PubMed ID: 19619394 [TBL] [Abstract][Full Text] [Related]
31. Development of core-shell coaxially electrospun composite PCL/chitosan scaffolds. Surucu S; Turkoglu Sasmazel H Int J Biol Macromol; 2016 Nov; 92():321-328. PubMed ID: 27387013 [TBL] [Abstract][Full Text] [Related]
32. Biocompatibility of biomimetic multilayered alginate-chitosan/β-TCP scaffold for osteochondral tissue. Algul D; Sipahi H; Aydin A; Kelleci F; Ozdatli S; Yener FG Int J Biol Macromol; 2015 Aug; 79():363-9. PubMed ID: 25982954 [TBL] [Abstract][Full Text] [Related]
33. Incorporation of amoxicillin-loaded organic montmorillonite into poly(ester-urethane) urea nanofibers as a functional tissue engineering scaffold. Yu K; Zhu T; Wu Y; Zhou X; Yang X; Wang J; Fang J; El-Hamshary H; Al-Deyab SS; Mo X Colloids Surf B Biointerfaces; 2017 Mar; 151():314-323. PubMed ID: 28040663 [TBL] [Abstract][Full Text] [Related]
34. Raloxifene microsphere-embedded collagen/chitosan/β-tricalcium phosphate scaffold for effective bone tissue engineering. Zhang ML; Cheng J; Xiao YC; Yin RF; Feng X Int J Pharm; 2017 Feb; 518(1-2):80-85. PubMed ID: 27988379 [TBL] [Abstract][Full Text] [Related]
35. Electrospun polyurethane membranes for Tissue Engineering applications. Gabriel LP; Rodrigues AA; Macedo M; Jardini AL; Maciel Filho R Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():113-117. PubMed ID: 28024566 [TBL] [Abstract][Full Text] [Related]
36. A comparison study between electrospun polycaprolactone and piezoelectric poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds for bone tissue engineering. Gorodzha SN; Muslimov AR; Syromotina DS; Timin AS; Tcvetkov NY; Lepik KV; Petrova AV; Surmeneva MA; Gorin DA; Sukhorukov GB; Surmenev RA Colloids Surf B Biointerfaces; 2017 Dec; 160():48-59. PubMed ID: 28917149 [TBL] [Abstract][Full Text] [Related]
37. Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication. Lee DH; Tripathy N; Shin JH; Song JE; Cha JG; Min KD; Park CH; Khang G Int J Biol Macromol; 2017 Feb; 95():14-23. PubMed ID: 27818295 [TBL] [Abstract][Full Text] [Related]
38. Engineering electrospun multicomponent polyurethane scaffolding platform comprising grapeseed oil and honey/propolis for bone tissue regeneration. Chao CY; Mani MP; Jaganathan SK PLoS One; 2018; 13(10):e0205699. PubMed ID: 30372449 [TBL] [Abstract][Full Text] [Related]
39. Fabrication and in vitro biological activity of βTCP-Chitosan-Fucoidan composite for bone tissue engineering. Puvaneswary S; Talebian S; Raghavendran HB; Murali MR; Mehrali M; Afifi AM; Kasim NH; Kamarul T Carbohydr Polym; 2015 Dec; 134():799-807. PubMed ID: 26428187 [TBL] [Abstract][Full Text] [Related]
40. Shish-kebab-structured poly(ε-caprolactone) nanofibers hierarchically decorated with chitosan-poly(ε-caprolactone) copolymers for bone tissue engineering. Jing X; Mi HY; Wang XC; Peng XF; Turng LS ACS Appl Mater Interfaces; 2015 Apr; 7(12):6955-65. PubMed ID: 25761418 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]