These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29994228)

  • 1. On the Duality Between Belief Networks and Feed-Forward Neural Networks.
    Baggenstoss PM
    IEEE Trans Neural Netw Learn Syst; 2019 Jan; 30(1):190-200. PubMed ID: 29994228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combinative neural network and its applications.
    Chen Y; Hu S; Chen D
    Comput Biol Chem; 2003 Jul; 27(3):287-95. PubMed ID: 12927103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Invariance priors for Bayesian feed-forward neural networks.
    Toussaint UV; Gori S; Dose V
    Neural Netw; 2006 Dec; 19(10):1550-7. PubMed ID: 16580175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acquisition of nonlinear forward optics in generative models: two-stage "downside-up" learning for occluded vision.
    Tajima S; Watanabe M
    Neural Netw; 2011 Mar; 24(2):148-58. PubMed ID: 21094592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Segmented Generative Networks: Data Generation in the Uniform Probability Space.
    Letizia NA; Tonello AM
    IEEE Trans Neural Netw Learn Syst; 2022 Mar; 33(3):1338-1347. PubMed ID: 33332279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Restricted Kernel Machines Using Conjugate Feature Duality.
    Suykens JAK
    Neural Comput; 2017 Aug; 29(8):2123-2163. PubMed ID: 28562217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.
    Ventura C; Latino DA; Martins F
    Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stereopsis by constraint learning feed-forward neural networks.
    Khotanzad A; Bokil A; Lee YW
    IEEE Trans Neural Netw; 1993; 4(2):332-42. PubMed ID: 18267732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ideal observer approximation using Bayesian classification neural networks.
    Kupinski MA; Edwards DC; Giger ML; Metz CE
    IEEE Trans Med Imaging; 2001 Sep; 20(9):886-99. PubMed ID: 11585206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive neural network output feedback control for stochastic nonlinear systems with unknown dead-zone and unmodeled dynamics.
    Tong S; Wang T; Li Y; Zhang H
    IEEE Trans Cybern; 2014 Jun; 44(6):910-21. PubMed ID: 24013830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probability Density Estimation Using Entropy Maximization.
    Miller G; Horn D
    Neural Comput; 1998 Sep; 10(7):1925-1938. PubMed ID: 9744904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mathematical theory of shape and neuro-fuzzy methodology-based diagnostic analysis: a comparative study on early detection and treatment planning of brain cancer.
    Kar S; Majumder DD
    Int J Clin Oncol; 2017 Aug; 22(4):667-681. PubMed ID: 28321787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the relationship between deterministic and probabilistic directed Graphical models: from Bayesian networks to recursive neural networks.
    Baldi P; Rosen-Zvi M
    Neural Netw; 2005 Oct; 18(8):1080-6. PubMed ID: 16157470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perceptual Adversarial Networks for Image-to-Image Transformation.
    Wang C; Xu C; Wanga C; Tao D
    IEEE Trans Image Process; 2018 Aug; 27(8):4066-4079. PubMed ID: 29993743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semisupervised learning for a hybrid generative/discriminative classifier based on the maximum entropy principle.
    Fujino A; Ueda N; Saito K
    IEEE Trans Pattern Anal Mach Intell; 2008 Mar; 30(3):424-37. PubMed ID: 18195437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decision Explanation and Feature Importance for Invertible Networks.
    Zhuang J; Dvornek NC; Li X; Yang J; Duncan JS
    IEEE Int Conf Comput Vis Workshops; 2019 Oct; 2019():4235-4239. PubMed ID: 33024924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical approach to neural network model building for gentamicin peak predictions.
    Smith BP; Brier ME
    J Pharm Sci; 1996 Jan; 85(1):65-9. PubMed ID: 8926586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DL-ADR: a novel deep learning model for classifying genomic variants into adverse drug reactions.
    Liang Z; Huang JX; Zeng X; Zhang G
    BMC Med Genomics; 2016 Aug; 9 Suppl 2(Suppl 2):48. PubMed ID: 27510822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-hidden-layer feed-forward networks are universal approximators: A constructive approach.
    Paluzo-Hidalgo E; Gonzalez-Diaz R; GutiƩrrez-Naranjo MA
    Neural Netw; 2020 Nov; 131():29-36. PubMed ID: 32739651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the capacity of deep generative networks for approximating distributions.
    Yang Y; Li Z; Wang Y
    Neural Netw; 2022 Jan; 145():144-154. PubMed ID: 34749027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.