These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 29994261)

  • 21. Identifying mutated driver pathways in cancer by integrating multi-omics data.
    Wu J; Cai Q; Wang J; Liao Y
    Comput Biol Chem; 2019 Jun; 80():159-167. PubMed ID: 30959272
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simultaneous Integration of Multi-omics Data Improves the Identification of Cancer Driver Modules.
    Silverbush D; Cristea S; Yanovich-Arad G; Geiger T; Beerenwinkel N; Sharan R
    Cell Syst; 2019 May; 8(5):456-466.e5. PubMed ID: 31103572
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes.
    Leiserson MD; Vandin F; Wu HT; Dobson JR; Eldridge JV; Thomas JL; Papoutsaki A; Kim Y; Niu B; McLellan M; Lawrence MS; Gonzalez-Perez A; Tamborero D; Cheng Y; Ryslik GA; Lopez-Bigas N; Getz G; Ding L; Raphael BJ
    Nat Genet; 2015 Feb; 47(2):106-14. PubMed ID: 25501392
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of driver pathways in cancer based on combinatorial patterns of somatic gene mutations.
    Li HT; Zhang J; Xia J; Zheng CH
    Neoplasma; 2016; 63(1):57-63. PubMed ID: 26639234
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MaxCLK: discovery of cancer driver genes via maximal clique and information entropy of modules.
    Liu J; Ma F; Zhu Y; Zhang N; Kong L; Mi J; Cong H; Gao R; Wang M; Zhang Y
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38065693
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An Effective Graph Clustering Method to Identify Cancer Driver Modules.
    Zhang W; Zeng Y; Wang L; Liu Y; Cheng YN
    Front Bioeng Biotechnol; 2020; 8():271. PubMed ID: 32318558
    [TBL] [Abstract][Full Text] [Related]  

  • 27. OMEN: network-based driver gene identification using mutual exclusivity.
    Van Daele D; Weytjens B; De Raedt L; Marchal K
    Bioinformatics; 2022 Jun; 38(12):3245-3251. PubMed ID: 35552634
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of Combinatorial Mutational Patterns in Human Cancer Genomes by Exclusivity Analysis.
    Tan H; Zhou X
    Methods Mol Biol; 2018; 1711():3-11. PubMed ID: 29344882
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CDPath: Cooperative Driver Pathways Discovery Using Integer Linear Programming and Markov Clustering.
    Yang Z; Yu G; Guo M; Yu J; Zhang X; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1384-1395. PubMed ID: 31581094
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discovering potential cancer driver genes by an integrated network-based approach.
    Shi K; Gao L; Wang B
    Mol Biosyst; 2016 Aug; 12(9):2921-31. PubMed ID: 27426053
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Finding co-mutated genes and candidate cancer genes in cancer genomes by stratified false discovery rate control.
    Wang J; Zhang Y; Shen X; Zhu J; Zhang L; Zou J; Guo Z
    Mol Biosyst; 2011 Apr; 7(4):1158-66. PubMed ID: 21279201
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identifying Driver Genomic Alterations in Cancers by Searching Minimum-Weight, Mutually Exclusive Sets.
    Lu S; Lu KN; Cheng SY; Hu B; Ma X; Nystrom N; Lu X
    PLoS Comput Biol; 2015 Aug; 11(8):e1004257. PubMed ID: 26317392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DrGaP: a powerful tool for identifying driver genes and pathways in cancer sequencing studies.
    Hua X; Xu H; Yang Y; Zhu J; Liu P; Lu Y
    Am J Hum Genet; 2013 Sep; 93(3):439-51. PubMed ID: 23954162
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulated annealing based algorithm for identifying mutated driver pathways in cancer.
    Li HT; Zhang YL; Zheng CH; Wang HQ
    Biomed Res Int; 2014; 2014():375980. PubMed ID: 24982873
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adaptively Weighted and Robust Mathematical Programming for the Discovery of Driver Gene Sets in Cancers.
    Xu X; Qin P; Gu H; Wang J; Wang Y
    Sci Rep; 2019 Apr; 9(1):5959. PubMed ID: 30976053
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Network-Based Coverage of Mutational Profiles Reveals Cancer Genes.
    Hristov BH; Singh M
    Cell Syst; 2017 Sep; 5(3):221-229.e4. PubMed ID: 28957656
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Discovering potential driver genes through an integrated model of somatic mutation profiles and gene functional information.
    Xi J; Wang M; Li A
    Mol Biosyst; 2017 Sep; 13(10):2135-2144. PubMed ID: 28825429
    [TBL] [Abstract][Full Text] [Related]  

  • 38. VarWalker: personalized mutation network analysis of putative cancer genes from next-generation sequencing data.
    Jia P; Zhao Z
    PLoS Comput Biol; 2014 Feb; 10(2):e1003460. PubMed ID: 24516372
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Frequent mutations in acetylation and ubiquitination sites suggest novel driver mechanisms of cancer.
    Narayan S; Bader GD; Reimand J
    Genome Med; 2016 May; 8(1):55. PubMed ID: 27175787
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of mutated driver pathways in cancer using a multi-objective optimization model.
    Zheng CH; Yang W; Chong YW; Xia JF
    Comput Biol Med; 2016 May; 72():22-9. PubMed ID: 26995027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.