These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 29994291)

  • 1. Physical Activity Classification for Elderly People in Free-Living Conditions.
    Awais M; Chiari L; Ihlen EAF; Helbostad JL; Palmerini L
    IEEE J Biomed Health Inform; 2019 Jan; 23(1):197-207. PubMed ID: 29994291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance Evaluation of State of the Art Systems for Physical Activity Classification of Older Subjects Using Inertial Sensors in a Real Life Scenario: A Benchmark Study.
    Awais M; Palmerini L; Bourke AK; Ihlen EA; Helbostad JL; Chiari L
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27973434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical Human Activity Recognition Using Wearable Sensors.
    Attal F; Mohammed S; Dedabrishvili M; Chamroukhi F; Oukhellou L; Amirat Y
    Sensors (Basel); 2015 Dec; 15(12):31314-38. PubMed ID: 26690450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly.
    Najafi B; Aminian K; Paraschiv-Ionescu A; Loew F; Büla CJ; Robert P
    IEEE Trans Biomed Eng; 2003 Jun; 50(6):711-23. PubMed ID: 12814238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical Activities Monitoring Using Wearable Acceleration Sensors Attached to the Body.
    Arif M; Kattan A
    PLoS One; 2015; 10(7):e0130851. PubMed ID: 26203909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classical Machine Learning Versus Deep Learning for the Older Adults Free-Living Activity Classification.
    Awais M; Chiari L; Ihlen EAF; Helbostad JL; Palmerini L
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Ambulatory Gait Monitoring System with Activity Classification and Gait Parameter Calculation Based on a Single Foot Inertial Sensor.
    Song M; Kim J
    IEEE Trans Biomed Eng; 2018 Apr; 65(4):885-893. PubMed ID: 28708542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of Activity Classification Algorithms in Free-Living Older Adults.
    Sasaki JE; Hickey AM; Staudenmayer JW; John D; Kent JA; Freedson PS
    Med Sci Sports Exerc; 2016 May; 48(5):941-50. PubMed ID: 26673129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human Physical Activity Recognition Using Smartphone Sensors.
    Voicu RA; Dobre C; Bajenaru L; Ciobanu RI
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30678039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of an accelerometer for measurement of activity in frail older people.
    Chigateri NG; Kerse N; Wheeler L; MacDonald B; Klenk J
    Gait Posture; 2018 Oct; 66():114-117. PubMed ID: 30172217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of physical activities based on body-segments coordination.
    Fradet L; Marin F
    Comput Biol Med; 2016 Sep; 76():134-42. PubMed ID: 27441831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fall-detection solution for mobile platforms using accelerometer and gyroscope data.
    De Cillisy F; De Simioy F; Guidoy F; Incalzi RA; Setolay R
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3727-30. PubMed ID: 26737103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification.
    Biswas D; Cranny A; Gupta N; Maharatna K; Achner J; Klemke J; Jöbges M; Ortmann S
    Hum Mov Sci; 2015 Apr; 40():59-76. PubMed ID: 25528632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pre-Processing Effect on the Accuracy of Event-Based Activity Segmentation and Classification through Inertial Sensors.
    Fida B; Bernabucci I; Bibbo D; Conforto S; Schmid M
    Sensors (Basel); 2015 Sep; 15(9):23095-109. PubMed ID: 26378544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical activity classification using the GENEA wrist-worn accelerometer.
    Zhang S; Rowlands AV; Murray P; Hurst TL
    Med Sci Sports Exerc; 2012 Apr; 44(4):742-8. PubMed ID: 21988935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A wearable sensor module with a neural-network-based activity classification algorithm for daily energy expenditure estimation.
    Lin CW; Yang YT; Wang JS; Yang YC
    IEEE Trans Inf Technol Biomed; 2012 Sep; 16(5):991-8. PubMed ID: 22875251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of activity classification in younger and older cohorts using a smartphone.
    Del Rosario MB; Wang K; Wang J; Liu Y; Brodie M; Delbaere K; Lovell NH; Lord SR; Redmond SJ
    Physiol Meas; 2014 Nov; 35(11):2269-86. PubMed ID: 25340659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suitability of commercial barometric pressure sensors to distinguish sitting and standing activities for wearable monitoring.
    Massé F; Bourke AK; Chardonnens J; Paraschiv-Ionescu A; Aminian K
    Med Eng Phys; 2014 Jun; 36(6):739-44. PubMed ID: 24485500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feature selection for elderly faller classification based on wearable sensors.
    Howcroft J; Kofman J; Lemaire ED
    J Neuroeng Rehabil; 2017 May; 14(1):47. PubMed ID: 28558724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.