These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 29994315)
1. Single-Trial Classification of fNIRS Signals in Four Directions Motor Imagery Tasks Measured From Prefrontal Cortex. Peng H; Chao J; Wang S; Dang J; Jiang F; Hu B; Majoe D IEEE Trans Nanobioscience; 2018 Jul; 17(3):181-190. PubMed ID: 29994315 [TBL] [Abstract][Full Text] [Related]
2. Classification of prefrontal and motor cortex signals for three-class fNIRS-BCI. Hong KS; Naseer N; Kim YH Neurosci Lett; 2015 Feb; 587():87-92. PubMed ID: 25529197 [TBL] [Abstract][Full Text] [Related]
3. Classification of motor imagery and execution signals with population-level feature sets: implications for probe design in fNIRS based BCI. Erdoĝan SB; Özsarfati E; Dilek B; Kadak KS; Hanoĝlu L; Akın A J Neural Eng; 2019 Apr; 16(2):026029. PubMed ID: 30634177 [TBL] [Abstract][Full Text] [Related]
4. Classification of functional near-infrared spectroscopy signals corresponding to the right- and left-wrist motor imagery for development of a brain-computer interface. Naseer N; Hong KS Neurosci Lett; 2013 Oct; 553():84-9. PubMed ID: 23973334 [TBL] [Abstract][Full Text] [Related]
5. Optimal feature selection from fNIRS signals using genetic algorithms for BCI. Noori FM; Naseer N; Qureshi NK; Nazeer H; Khan RA Neurosci Lett; 2017 Apr; 647():61-66. PubMed ID: 28336339 [TBL] [Abstract][Full Text] [Related]
6. Automatic schizophrenic discrimination on fNIRS by using complex brain network analysis and SVM. Song H; Chen L; Gao R; Bogdan IIM; Yang J; Wang S; Dong W; Quan W; Dang W; Yu X BMC Med Inform Decis Mak; 2017 Dec; 17(Suppl 3):166. PubMed ID: 29297320 [TBL] [Abstract][Full Text] [Related]
7. A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: a functional near-infrared spectroscopy study. Basso Moro S; Bisconti S; Muthalib M; Spezialetti M; Cutini S; Ferrari M; Placidi G; Quaresima V Neuroimage; 2014 Jan; 85 Pt 1():451-60. PubMed ID: 23684867 [TBL] [Abstract][Full Text] [Related]
8. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching. Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118 [TBL] [Abstract][Full Text] [Related]
9. Activity in the prefrontal cortex during motor imagery of precision gait: an fNIRS study. Kotegawa K; Yasumura A; Teramoto W Exp Brain Res; 2020 Jan; 238(1):221-228. PubMed ID: 31834451 [TBL] [Abstract][Full Text] [Related]
10. Single-trial classification of motor imagery differing in task complexity: a functional near-infrared spectroscopy study. Holper L; Wolf M J Neuroeng Rehabil; 2011 Jun; 8():34. PubMed ID: 21682906 [TBL] [Abstract][Full Text] [Related]
11. An fNIRS-Based Motor Imagery BCI for ALS: A Subject-Specific Data-Driven Approach. Hosni SM; Borgheai SB; McLinden J; Shahriari Y IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3063-3073. PubMed ID: 33206606 [TBL] [Abstract][Full Text] [Related]
12. Enhancing classification accuracy of fNIRS-BCI using features acquired from vector-based phase analysis. Nazeer H; Naseer N; Khan RA; Noori FM; Qureshi NK; Khan US; Khan MJ J Neural Eng; 2020 Oct; 17(5):056025. PubMed ID: 33055382 [TBL] [Abstract][Full Text] [Related]
13. Understanding inverse oxygenation responses during motor imagery: a functional near-infrared spectroscopy study. Holper L; Shalóm DE; Wolf M; Sigman M Eur J Neurosci; 2011 Jun; 33(12):2318-28. PubMed ID: 21631608 [TBL] [Abstract][Full Text] [Related]
14. Application of a common spatial pattern-based algorithm for an fNIRS-based motor imagery brain-computer interface. Zhang S; Zheng Y; Wang D; Wang L; Ma J; Zhang J; Xu W; Li D; Zhang D Neurosci Lett; 2017 Aug; 655():35-40. PubMed ID: 28663052 [TBL] [Abstract][Full Text] [Related]
15. Characteristic brain functional activation and connectivity during actual and imaginary right-handed grasp. Yu Y; Shen X; Hong Y; Wang F Brain Res; 2024 Dec; 1844():149141. PubMed ID: 39122137 [TBL] [Abstract][Full Text] [Related]
16. Classification of prefrontal activity due to mental arithmetic and music imagery using hidden Markov models and frequency domain near-infrared spectroscopy. Power SD; Falk TH; Chau T J Neural Eng; 2010 Apr; 7(2):26002. PubMed ID: 20168001 [TBL] [Abstract][Full Text] [Related]
17. Does ventrolateral prefrontal cortex help in searching for the lost key? Evidence from an fNIRS study. Carrieri M; Lancia S; Bocchi A; Ferrari M; Piccardi L; Quaresima V Brain Imaging Behav; 2018 Jun; 12(3):785-797. PubMed ID: 28600742 [TBL] [Abstract][Full Text] [Related]
18. Effective Connectivity of Cortical Sensorimotor Networks During Finger Movement Tasks: A Simultaneous fNIRS, fMRI, EEG Study. Anwar AR; Muthalib M; Perrey S; Galka A; Granert O; Wolff S; Heute U; Deuschl G; Raethjen J; Muthuraman M Brain Topogr; 2016 Sep; 29(5):645-60. PubMed ID: 27438589 [TBL] [Abstract][Full Text] [Related]
19. Analysis of Different Classification Techniques for Two-Class Functional Near-Infrared Spectroscopy-Based Brain-Computer Interface. Naseer N; Qureshi NK; Noori FM; Hong KS Comput Intell Neurosci; 2016; 2016():5480760. PubMed ID: 27725827 [TBL] [Abstract][Full Text] [Related]
20. Real-Time Subject-Independent Pattern Classification of Overt and Covert Movements from fNIRS Signals. Robinson N; Zaidi AD; Rana M; Prasad VA; Guan C; Birbaumer N; Sitaram R PLoS One; 2016; 11(7):e0159959. PubMed ID: 27467528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]