BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29994402)

  • 1. Feedback Control of Functional Electrical Stimulation for 2-D Arm Reaching Movements.
    Sharif Razavian R; Ghannadi B; Mehrabi N; Charlet M; McPhee J
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):2033-2043. PubMed ID: 29994402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feedback control of functional electrical stimulation for arbitrary upper extremity movements.
    Razavian RS; Ghannadi B; McPhee J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1451-1456. PubMed ID: 28814024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An optimized proportional-derivative controller for the human upper extremity with gravity.
    Jagodnik KM; Blana D; van den Bogert AJ; Kirsch RF
    J Biomech; 2015 Oct; 48(13):3692-700. PubMed ID: 26358531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A neural tracking and motor control approach to improve rehabilitation of upper limb movements.
    Goffredo M; Bernabucci I; Schmid M; Conforto S
    J Neuroeng Rehabil; 2008 Feb; 5():5. PubMed ID: 18251996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biologically inspired neural network controller for ballistic arm movements.
    Bernabucci I; Conforto S; Capozza M; Accornero N; Schmid M; D'Alessio T
    J Neuroeng Rehabil; 2007 Sep; 4():33. PubMed ID: 17767712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional electrical stimulation to augment poststroke reach and hand opening in the presence of voluntary effort: a pilot study.
    Makowski NS; Knutson JS; Chae J; Crago PE
    Neurorehabil Neural Repair; 2014; 28(3):241-9. PubMed ID: 24270058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The electronic counting arm movement test (eCAM test).
    Bodranghien F; Martin C; Ansay C; Camut S; Busegnies Y; Manto M
    Neurol Res; 2015 Jun; 37(6):461-9. PubMed ID: 25413688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Holding Static Arm Configurations With Functional Electrical Stimulation: A Case Study.
    Wolf DN; Schearer EM
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):2044-2052. PubMed ID: 30130233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Closed-Loop Asynchronous Neuromuscular Electrical Stimulation Prolongs Functional Movements in the Lower Body.
    Downey RJ; Cheng TH; Bellman MJ; Dixon WE
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1117-27. PubMed ID: 25935038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Training an Actor-Critic Reinforcement Learning Controller for Arm Movement Using Human-Generated Rewards.
    Jagodnik KM; Thomas PS; van den Bogert AJ; Branicky MS; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1892-1905. PubMed ID: 28475063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-muscle FES force control of the human arm for arbitrary goals.
    Schearer EM; Liao YW; Perreault EJ; Tresch MC; Memberg WD; Kirsch RF; Lynch KM
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):654-63. PubMed ID: 24122573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evoked electromyography-based closed-loop torque control in functional electrical stimulation.
    Zhang Q; Hayashibe M; Azevedo-Coste C
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2299-307. PubMed ID: 23529189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization and evaluation of a proportional derivative controller for planar arm movement.
    Jagodnik KM; van den Bogert AJ
    J Biomech; 2010 Apr; 43(6):1086-91. PubMed ID: 20097345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-scaling based sliding mode control for Neuromuscular Electrical Stimulation under uncertain relative degrees.
    Oliveira TR; Costa LR; Catunda JMY; Pino AV; Barbosa W; Souza MN
    Med Eng Phys; 2017 Jun; 44():53-62. PubMed ID: 28363767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The timing of control signals underlying fast point-to-point arm movements.
    Ghafouri M; Feldman AG
    Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully automatic control of paraplegic FES pedaling using higher-order sliding mode and fuzzy logic control.
    Farhoud A; Erfanian A
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):533-42. PubMed ID: 24760923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined feedforward and feedback control of a redundant, nonlinear, dynamic musculoskeletal system.
    Blana D; Kirsch RF; Chadwick EK
    Med Biol Eng Comput; 2009 May; 47(5):533-42. PubMed ID: 19343388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting functional force production capabilities of upper extremity functional electrical stimulation neuroprostheses: a proof of concept study.
    Schearer EM; Wolf DN
    J Neural Eng; 2020 Feb; 17(1):016051. PubMed ID: 31910397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling open-loop stability of a human arm driven by a functional electrical stimulation neuroprosthesis.
    Liao YW; Schearer EM; Hu X; Perreault EJ; Tresch MC; Lynch KM
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3598-601. PubMed ID: 24110508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing a Quasi-Static Controller for a Paralyzed Human Arm: A Simulation Study.
    Wolf DN; Schearer EM
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1153-1158. PubMed ID: 31374785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.