These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 29994404)

  • 1. Hemodynamic Sensing of 3-D Fingertip Force by Using Nonpulsatile and Pulsatile Signals in the Proximal Part.
    Yoshimoto S; Hinatsu S; Kuroda Y; Oshiro O
    IEEE Trans Biomed Circuits Syst; 2018 Oct; 12(5):1155-1164. PubMed ID: 29994404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemodynamic sensing of 3D fingertip force using PPG device on proximal part.
    Yoshimoto S; Hinatsu S; Kuroda Y; Oshiro O
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3289-3292. PubMed ID: 29060600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contactless and continuous monitoring of heart rate based on photoplethysmography on a mattress.
    Wong MY; Pickwell-MacPherson E; Zhang YT
    Physiol Meas; 2010 Jul; 31(7):1065-74. PubMed ID: 20585149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical study on the effect of sensor contact force on pulse transit time.
    Teng XF; Zhang YT
    IEEE Trans Biomed Eng; 2007 Aug; 54(8):1490-8. PubMed ID: 17694870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the analysis of fingertip photoplethysmogram signals.
    Elgendi M
    Curr Cardiol Rev; 2012 Feb; 8(1):14-25. PubMed ID: 22845812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wearable Photoelectric Fingertip Force Sensing System Based on Blood Volume Changes without Sensory Interference.
    Dong K; Chu Y; Tian X; Fang T; Ye X; Wang X; Tang F
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):34578-34587. PubMed ID: 37439604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Touch interface for sensing fingertip force in mobile device using electromyogram.
    Odagaki M; Taura T; Harakawa T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3443-6. PubMed ID: 24110469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Wearable Apparatus to Measure Fingertip Forces in Manipulation Tasks Based on MEMS Barometric Sensors.
    Cerveri P; Quinzi M; Bovio D; Frigo CA
    IEEE Trans Haptics; 2017; 10(3):317-324. PubMed ID: 28114037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of cardiovascular function from multi-Gaussian fitting of a finger photoplethysmogram.
    Couceiro R; Carvalho P; Paiva RP; Henriques J; Quintal I; Antunes M; Muehlsteff J; Eickholt C; Brinkmeyer C; Kelm M; Meyer C
    Physiol Meas; 2015 Sep; 36(9):1801-25. PubMed ID: 26235798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of applied sensor contact force on pulse transit time.
    Teng XF; Zhang YT
    Physiol Meas; 2006 Aug; 27(8):675-84. PubMed ID: 16772666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time to consider the contact force during photoplethysmography measurement during pediatric anesthesia: A prospective, nonrandomized interventional study.
    Lee JH; Yang S; Park J; Kim HC; Kim EH; Jang YE; Kim JT; Kim HS
    Paediatr Anaesth; 2018 Jul; 28(7):660-667. PubMed ID: 29920853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of different contacting pressure on the transfer function between finger photoplethysmographic and radial blood pressure waveforms.
    Hsiu H; Hsu CL; Wu TL
    Proc Inst Mech Eng H; 2011 Jun; 225(6):575-83. PubMed ID: 22034741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo Analysis of Optical Interactions in Reflectance and Transmittance Finger Photoplethysmography.
    Chatterjee S; Kyriacou PA
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30769957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosignal integrated circuit with simultaneous acquisition of ECG and PPG for wearable healthcare applications.
    Kim H; Park Y; Ko Y; Mun Y; Lee S; Ko H
    Technol Health Care; 2018; 26(1):3-9. PubMed ID: 29060948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finger photoplethysmogram pulse amplitude changes induced by flow-mediated dilation.
    Zahedi E; Jaafar R; Ali MA; Mohamed AL; Maskon O
    Physiol Meas; 2008 May; 29(5):625-37. PubMed ID: 18460764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel feature ranking algorithm for biometric recognition with PPG signals.
    Reşit Kavsaoğlu A; Polat K; Recep Bozkurt M
    Comput Biol Med; 2014 Jun; 49():1-14. PubMed ID: 24705467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of Vascular Health With Photoplethysmographic Waveforms From the Fingertip.
    Wu HT; Lin BY; Yang CC; Ou YN; Sun CK
    IEEE J Biomed Health Inform; 2017 Mar; 21(2):382-386. PubMed ID: 26761908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemodynamic sensing using subcutaneous photoplethysmography.
    Turcott RG; Pavek TJ
    Am J Physiol Heart Circ Physiol; 2008 Dec; 295(6):H2560-72. PubMed ID: 18849335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow mediated dilation with photoplethysmography as a substitute for ultrasonic imaging.
    Mashayekhi G; Zahedi E; Movahedian Attar H; Sharifi F
    Physiol Meas; 2015 Jul; 36(7):1551-71. PubMed ID: 26057334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of photoplethysmogram measured from wrist and finger and the effect of measurement location on pulse arrival time.
    Rajala S; Lindholm H; Taipalus T
    Physiol Meas; 2018 Aug; 39(7):075010. PubMed ID: 29794339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.