These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 29994515)

  • 1. 6-DoF Haptic Rendering of Static Coulomb Friction Using Linear Programming.
    Zhao D; Li Y; Barbic J
    IEEE Trans Haptics; 2018 Feb; ():. PubMed ID: 29994515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Six-DoF Haptic Rendering of Contact Between Geometrically Complex Reduced Deformable Models.
    Barbic J; James DL
    IEEE Trans Haptics; 2008; 1(1):39-52. PubMed ID: 27780152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive 6-DoF Haptic Contact Stiffness Using the Gauss Map.
    Xu H; Barbic J
    IEEE Trans Haptics; 2016; 9(3):323-332. PubMed ID: 28113563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 6-DoF Haptic Rendering Using Continuous Collision Detection between Points and Signed Distance Fields.
    Hongyi Xu ; Barbic J
    IEEE Trans Haptics; 2017; 10(2):151-161. PubMed ID: 28113519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Haptic Rendering of Diverse Tool-Tissue Contact Constraints During Dental Implantation Procedures.
    Zhao X; Zhu Z; Cong Y; Zhao Y; Zhang Y; Wang D
    Front Robot AI; 2020; 7():35. PubMed ID: 33501203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the Efficiency of Six-DoF Haptic Rendering-Based Virtual Assembly Training.
    Zheng M; Zhao D; Barbic J
    IEEE Trans Haptics; 2021; 14(1):212-224. PubMed ID: 32746380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Configuration-based optimization for six degree-of-freedom haptic rendering for fine manipulation.
    Dangxiao Wang ; Xin Zhang ; Yuru Zhang ; Jing Xiao
    IEEE Trans Haptics; 2013; 6(2):167-80. PubMed ID: 24808301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Method for Surface Exploration by 6-DOF Encountered-Type Haptic Display Towards Virtual Palpation.
    Diez SP; Poorten EV; Reynaerts D; Yokokohji Y
    IEEE Trans Haptics; 2021; 14(3):577-590. PubMed ID: 33735085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perceived realism of haptic rendering methods for bimanual high force tasks: original and replication study.
    Lorenz M; Hoffmann A; Kaluschke M; Ziadeh T; Pillen N; Kusserow M; Perret J; Knopp S; Dettmann A; Klimant P; Zachmann G; Bullinger AC
    Sci Rep; 2023 Jul; 13(1):11230. PubMed ID: 37433815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Realistic haptic rendering of interacting deformable objects in virtual environments.
    Duriez C; Dubois F; Kheddar A; Andriot C
    IEEE Trans Vis Comput Graph; 2006; 12(1):36-47. PubMed ID: 16382606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous Collision Detection for Virtual Proxy Haptic Rendering of Deformable Triangular Mesh Models.
    Ding H; Mitake H; Hasegawa S
    IEEE Trans Haptics; 2019; 12(4):624-634. PubMed ID: 31425052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Position-Control Based Approach to Haptic Rendering of Stiff Objects.
    Wang Y; Feng L; Andersson K
    IEEE Trans Haptics; 2021; 14(3):646-659. PubMed ID: 33315572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Haptic Shared Autonomy With Partial Orientation Regulation for DoF Deficiency in Remote Side.
    Li G; Caponetto F; Wu X; Sarakoglou I; Tsagarakis NG
    IEEE Trans Haptics; 2023; 16(1):86-95. PubMed ID: 37030691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A proxy method for real-time 3-DOF haptic rendering of streaming point cloud data.
    Rydén F; Chizeck HJ
    IEEE Trans Haptics; 2013; 6(3):257-67. PubMed ID: 24808323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data-Driven Haptic Modeling and Rendering of Viscoelastic and Frictional Responses of Deformable Objects.
    Yim S; Jeon S; Choi S
    IEEE Trans Haptics; 2016; 9(4):548-559. PubMed ID: 27244750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Surface-to-Surface Finite Element Algorithm for Large Deformation Frictional Contact in febio.
    Zimmerman BK; Ateshian GA
    J Biomech Eng; 2018 Aug; 140(8):0810131-08101315. PubMed ID: 30003262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wearable teleoperation controller with 2-DoF robotic arm and haptic feedback for enhanced interaction in virtual reality.
    Zhang Z; Qian C
    Front Neurorobot; 2023; 17():1228587. PubMed ID: 37609455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Penalty Force for Coupling Materials with Coulomb Friction.
    Ding O; Schroeder C
    IEEE Trans Vis Comput Graph; 2020 Jul; 26(7):2443-2455. PubMed ID: 30629506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model of Friction with Plastic Contact Nudging: Amontons-Coulomb Laws, Aging of Static Friction, and Nonmonotonic Stribeck Curves with Finite Quasistatic Limit.
    Fielding SM
    Phys Rev Lett; 2023 Apr; 130(17):178203. PubMed ID: 37172252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of Coulomb and pseudo-Coulomb friction implementations: Application to the table contact phase of gymnastics vaulting.
    Jackson MI; Hiley MJ; Yeadon MR
    J Biomech; 2011 Oct; 44(15):2706-11. PubMed ID: 21889150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.