BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 29994534)

  • 21. Prediction of 8-state protein secondary structures by a novel deep learning architecture.
    Zhang B; Li J; Lü Q
    BMC Bioinformatics; 2018 Aug; 19(1):293. PubMed ID: 30075707
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Local Epigenomic Data are more Informative than Local Genome Sequence Data in Predicting Enhancer-Promoter Interactions Using Neural Networks.
    Xiao M; Zhuang Z; Pan W
    Genes (Basel); 2019 Dec; 11(1):. PubMed ID: 31905774
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Novel Patient Similarity Network (PSN) Framework Based on Multi-Model Deep Learning for Precision Medicine.
    Navaz AN; T El-Kassabi H; Serhani MA; Oulhaj A; Khalil K
    J Pers Med; 2022 May; 12(5):. PubMed ID: 35629190
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrating multi-attribute similarity networks for robust representation of the protein space.
    Camoglu O; Can T; Singh AK
    Bioinformatics; 2006 Jul; 22(13):1585-92. PubMed ID: 16595556
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inferring Drug-Related Diseases Based on Convolutional Neural Network and Gated Recurrent Unit.
    Xuan P; Zhao L; Zhang T; Ye Y; Zhang Y
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31349692
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis.
    Shickel B; Tighe PJ; Bihorac A; Rashidi P
    IEEE J Biomed Health Inform; 2018 Sep; 22(5):1589-1604. PubMed ID: 29989977
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Multi-Task Framework for Monitoring Health Conditions via Attention-based Recurrent Neural Networks.
    Suo Q; Ma F; Canino G; Gao J; Zhang A; Veltri P; Agostino G
    AMIA Annu Symp Proc; 2017; 2017():1665-1674. PubMed ID: 29854237
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Novel Drug Repositioning Approach Based on Integrative Multiple Similarity Measures.
    Yan C; Feng L; Wang W; Wang J; Zhang G; Luo J
    Curr Mol Med; 2020; 20(6):442-451. PubMed ID: 31729291
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Representation learning for clinical time series prediction tasks in electronic health records.
    Ruan T; Lei L; Zhou Y; Zhai J; Zhang L; He P; Gao J
    BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 8):259. PubMed ID: 31842854
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep Belief CNN Feature Representation Based Content Based Image Retrieval for Medical Images.
    Sundararajan SK; Sankaragomathi B; Priya DS
    J Med Syst; 2019 May; 43(6):174. PubMed ID: 31069547
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep Ranking for Person Re-Identification via Joint Representation Learning.
    Chen SZ; Guo CC; Lai JH
    IEEE Trans Image Process; 2016 May; 25(5):2353-67. PubMed ID: 27019494
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sharing Matters for Generalization in Deep Metric Learning.
    Milbich T; Roth K; Brattoli B; Ommer B
    IEEE Trans Pattern Anal Mach Intell; 2022 Jan; 44(1):416-427. PubMed ID: 32750817
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PARSE: A personalized clinical time-series representation learning framework via abnormal offsets analysis.
    An Y; Cai G; Chen X; Guo L
    Comput Methods Programs Biomed; 2023 Dec; 242():107838. PubMed ID: 37832431
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep learning for DNase I hypersensitive sites identification.
    Lyu C; Wang L; Zhang J
    BMC Genomics; 2018 Dec; 19(Suppl 10):905. PubMed ID: 30598079
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PSF: A Unified Patient Similarity Evaluation Framework Through Metric Learning With Weak Supervision.
    Fei Wang ; Sun J
    IEEE J Biomed Health Inform; 2015 May; 19(3):1053-60. PubMed ID: 25910264
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interpreting patient-Specific risk prediction using contextual decomposition of BiLSTMs: application to children with asthma.
    AlSaad R; Malluhi Q; Janahi I; Boughorbel S
    BMC Med Inform Decis Mak; 2019 Nov; 19(1):214. PubMed ID: 31703676
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep metric learning for bioacoustic classification: Overcoming training data scarcity using dynamic triplet loss.
    Thakur A; Thapar D; Rajan P; Nigam A
    J Acoust Soc Am; 2019 Jul; 146(1):534. PubMed ID: 31370640
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using neural attention networks to detect adverse medical events from electronic health records.
    Chu J; Dong W; He K; Duan H; Huang Z
    J Biomed Inform; 2018 Nov; 87():118-130. PubMed ID: 30336262
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assistant diagnosis with Chinese electronic medical records based on CNN and BiLSTM with phrase-level and word-level attentions.
    Wang T; Xuan P; Liu Z; Zhang T
    BMC Bioinformatics; 2020 Jun; 21(1):230. PubMed ID: 32503424
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records.
    Miotto R; Li L; Kidd BA; Dudley JT
    Sci Rep; 2016 May; 6():26094. PubMed ID: 27185194
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.