These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 29994656)
1. Blind Source Separation-Based Motion Detector for Imaging Super-Paramagnetic Iron Oxide (SPIO) Particles in Magnetomotive Ultrasound Imaging. Hossain MM; Levy BE; Thapa D; Oldenburg AL; Gallippi CM IEEE Trans Med Imaging; 2018 Oct; 37(10):2356-2366. PubMed ID: 29994656 [TBL] [Abstract][Full Text] [Related]
2. Blind Source Separation - Based Motion Detector for Sub-Micrometer, Periodic Displacement in Ultrasonic Imaging. Hossain MM; Thapa D; Sierchio J; Oldenburg A; Gallippil C IEEE Int Ultrason Symp; 2016 Sep; 2016():. PubMed ID: 29225731 [TBL] [Abstract][Full Text] [Related]
3. On the Performance of Time Domain Displacement Estimators for Magnetomotive Ultrasound Imaging. Ersepke T; Kranemann TC; Schmitz G IEEE Trans Ultrason Ferroelectr Freq Control; 2019 May; 66(5):911-921. PubMed ID: 30869613 [TBL] [Abstract][Full Text] [Related]
4. Frequency- and phase-sensitive magnetomotive ultrasound imaging of superparamagnetic iron oxide nanoparticles. Evertsson M; Cinthio M; Fredriksson S; Olsson F; Persson H; Jansson T IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Mar; 60(3):481-91. PubMed ID: 23475915 [TBL] [Abstract][Full Text] [Related]
5. Inversion of displacement fields to quantify the magnetic particle distribution in homogeneous elastic media from magnetomotive ultrasound. Thapa D; Levy BE; Marks DL; Oldenburg AL Phys Med Biol; 2019 Jun; 64(12):125019. PubMed ID: 31051477 [TBL] [Abstract][Full Text] [Related]
6. Multimodal detection of iron oxide nanoparticles in rat lymph nodes using magnetomotive ultrasound imaging and magnetic resonance imaging. Evertsson M; Kjellman P; Cinthio M; Fredriksson S; in't Zandt R; Persson H; Jansson T IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Aug; 61(8):1276-83. PubMed ID: 25073135 [TBL] [Abstract][Full Text] [Related]
7. Effect of Model Thrombus Volume and Elastic Modulus on Magnetomotive Ultrasound Signal Under Pulsatile Flow. Levy BE; Hossain MM; Sierchio JM; Thapa D; Gallippi CM; Oldenburg AL IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Aug; 65(8):1380-1388. PubMed ID: 29993541 [TBL] [Abstract][Full Text] [Related]
8. Combined Magnetomotive ultrasound, PET/CT, and MR imaging of Evertsson M; Kjellman P; Cinthio M; Andersson R; Tran TA; In't Zandt R; Grafström G; Toftevall H; Fredriksson S; Ingvar C; Strand SE; Jansson T Sci Rep; 2017 Jul; 7(1):4824. PubMed ID: 28684867 [TBL] [Abstract][Full Text] [Related]
10. Contrast-enhanced imaging of SPIO-labeled platelets using magnetomotive ultrasound. Pope AG; Wu G; McWhorter FY; Merricks EP; Nichols TC; Czernuszewicz TJ; Gallippi CM; Oldenburg AL Phys Med Biol; 2013 Oct; 58(20):7277-90. PubMed ID: 24077004 [TBL] [Abstract][Full Text] [Related]
11. Quantitative Determination of Local Density of Iron Oxide Nanoparticles Used for Drug Targeting Employing Inverse Magnetomotive Ultrasound. Fink M; Rupitsch SJ; Lyer S; Ermert H IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Jul; 68(7):2482-2495. PubMed ID: 33760734 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of cellular stress responses in magnetomotive ultrasound. Sjöstrand S; Stephanie Zeller K; Evertsson M; Jansson T Nanomedicine (Lond); 2022 Jun; 17(14):1013-1025. PubMed ID: 36043897 [TBL] [Abstract][Full Text] [Related]
13. Single Magnetic Particle Motion in Magnetomotive Ultrasound: An Analytical Model and Experimental Validation. Levy BE; Oldenburg AL IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Aug; 68(8):2635-2644. PubMed ID: 33844629 [TBL] [Abstract][Full Text] [Related]
14. A Novel Theranostic Platform: Integration of Magnetomotive and Thermal Ultrasound Imaging With Magnetic Hyperthermia. Hadadian Y; Uliana JH; Carneiro AAO; Pavan TZ IEEE Trans Biomed Eng; 2021 Jan; 68(1):68-77. PubMed ID: 32356735 [TBL] [Abstract][Full Text] [Related]
15. A hybrid transducer to evaluate stomach emptying by ultrasound and susceptometric measurements: an in vivo feasibility study. Bruno AC; Sampaio DR; Pavan TZ; Baffa O; Carneiro AA IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jul; 62(7):1288-94. PubMed ID: 26168175 [TBL] [Abstract][Full Text] [Related]
16. Adaptive clutter filtering via blind source separation for two-dimensional ultrasonic blood velocity measurement. Gallippi CM; Trahey GE Ultrason Imaging; 2002 Oct; 24(4):193-214. PubMed ID: 12665237 [TBL] [Abstract][Full Text] [Related]
17. Time-to-echo optimization for spin echo magnetic resonance imaging of liver metastasis using superparamagnetic iron oxide particles. Alger JR; Harreld JH; Chen S; Mintorovitch J; Lu DS J Magn Reson Imaging; 2001 Nov; 14(5):586-94. PubMed ID: 11747011 [TBL] [Abstract][Full Text] [Related]
18. Elastometry of clot phantoms via magnetomotive ultrasound-based resonant acoustic spectroscopy. Levy BE; Oldenburg AL Phys Med Biol; 2022 Jul; 67(15):. PubMed ID: 35790176 [No Abstract] [Full Text] [Related]
19. In vivo quantification of SPIO nanoparticles for cell labeling based on MR phase gradient images. Wang L; Potter WM; Zhao Q Contrast Media Mol Imaging; 2015; 10(1):43-50. PubMed ID: 24764174 [TBL] [Abstract][Full Text] [Related]
20. BSS-based filtering of physiological and ARFI-induced tissue and blood motion. Gallippi CM; Nightingale KR; Trahey GE Ultrasound Med Biol; 2003 Nov; 29(11):1583-92. PubMed ID: 14654154 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]