BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 29994658)

  • 1. Plane-Wave Contrast Imaging: A Radiation Force Point of View.
    Blue LM; Guidi F; Vos HJ; Slagle CJ; Borden MA; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2296-2300. PubMed ID: 29994658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbubble Radiation Force-Induced Translation in Plane-Wave Versus Focused Transmission Modes.
    Guidi F; Supponen O; Upadhyay A; Vos HJ; Borden MA; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Dec; 66(12):1856-1865. PubMed ID: 31449011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasound contrast plane wave imaging.
    Couture O; Fink M; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Dec; 59(12):2676-83. PubMed ID: 23221216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive Multifocus Beamforming for Contrast-Enhanced-Super-Resolution Ultrasound Imaging in Deep Tissue.
    Espindola D; Lin F; Soulioti DE; Dayton PA; Pinton GF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2255-2263. PubMed ID: 30136938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical observations of acoustical radiation force effects on individual air bubbles.
    Palanchon P; Tortoli P; Bouakaz A; Versluis M; de Jong N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jan; 52(1):104-10. PubMed ID: 15742566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-high-frequency ultrasound excitation on microbubble destruction volume.
    Shen CC; Su SY; Cheng CH; Yeh CK
    Ultrasonics; 2010 Jun; 50(7):698-703. PubMed ID: 20193957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear pulse compression in pulse-inversion fundamental imaging.
    Cheng YC; Shen CC; Li PC
    Ultrason Imaging; 2007 Apr; 29(2):73-86. PubMed ID: 17679323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A sensitive ultrasonic imaging method for targeted contrast microbubble detection.
    Zheng H; Kruse DE; Stephens DN; Ferrara KW; Sutcliffe P; Gardner E
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5290-3. PubMed ID: 19163911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of acoustic transmit parameters on the destruction of contrast microbubbles in vitro.
    Shi WT; Forsberg F; Vaidyanathan P; Tornes A; Østensen J; Goldberg BB
    Phys Med Biol; 2006 Aug; 51(16):4031-45. PubMed ID: 16885622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbubble characterization through acoustically induced deflation.
    Guidi F; Vos HJ; Mori R; de Jong N; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):193-202. PubMed ID: 20040446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Frequency Multipulse, Plane-Wave Acoustic Contrast Imaging.
    Ketterling JA; Silverman RH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 May; 67(5):934-942. PubMed ID: 31841408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-processing radio-frequency signal based on deep learning method for ultrasonic microbubble imaging.
    Dai M; Li S; Wang Y; Zhang Q; Yu J
    Biomed Eng Online; 2019 Sep; 18(1):95. PubMed ID: 31511011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different effects of microbubble destruction and translation in Doppler measurements.
    Tortoli P; Boni E; Corsi M; Arditi M; Frinking P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jul; 52(7):1183-8. PubMed ID: 16212258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasound Contrast Plane Wave Imaging Based on Bubble Wavelet Transform: In Vitro and In Vivo Validations.
    Wang D; Zong Y; Yang X; Hu H; Wan J; Zhang L; Bouakaz A; Wan M
    Ultrasound Med Biol; 2016 Jul; 42(7):1584-97. PubMed ID: 27067280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of size range on ultrasound-induced translations in microbubble populations.
    Supponen O; Upadhyay A; Lum J; Guidi F; Murray T; Vos HJ; Tortoli P; Borden M
    J Acoust Soc Am; 2020 May; 147(5):3236. PubMed ID: 32486824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasound assessment of translation of microbubbles driven by acoustic radiation force in a channel filled with stationary fluid.
    Yoshida K; Saito K; Omura M; Tamura K; Yamaguchi T
    J Acoust Soc Am; 2019 Oct; 146(4):2335. PubMed ID: 31672000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advantages in using multifrequency excitation of contrast microbubbles for enhancing echo particle image velocimetry techniques: initial numerical studies using rectangular and triangular waves.
    Zheng H; Mukdadi O; Kim H; Hertzberg JR; Shandas R
    Ultrasound Med Biol; 2005 Jan; 31(1):99-108. PubMed ID: 15653236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parametric array technique for microbubble excitation.
    Vos HJ; Goertz DE; van der Steen AF; de Jong N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):924-34. PubMed ID: 21622048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hadamard-Encoded Multipulses for Contrast-Enhanced Ultrasound Imaging.
    Gong P; Song P; Chen S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Nov; 64(11):1674-1683. PubMed ID: 28866490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase shift variance imaging - a new technique for destructive microbubble imaging.
    Siepmann M; Fokong S; Mienkina M; Lederle W; Kiessling F; Gätjens J; Schmitz G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):909-23. PubMed ID: 23661125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.