These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 29994658)

  • 41. Investigation of polymer-shelled microbubble motions in acoustophoresis.
    Kothapalli SV; Wiklund M; Janerot-Sjoberg B; Paradossi G; Grishenkov D
    Ultrasonics; 2016 Aug; 70():275-83. PubMed ID: 27261567
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Optimizing Acoustic Activation of Phase Change Contrast Agents With the Activation Pressure Matching Method: A Review.
    Rojas JD; Dayton PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jan; 64(1):264-272. PubMed ID: 27740481
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Combined perfusion and doppler imaging using plane-wave nonlinear detection and microbubble contrast agents.
    Tremblay-Darveau C; Williams R; Milot L; Bruce M; Burns PN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Dec; 61(12):1988-2000. PubMed ID: 25474775
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Detection of Individual Microbubbles by Burst-Wave-Aided Contrast-Enhanced Active Doppler Ultrasonography.
    Yoshida K; Omura M; Tamura K; Hirata S; Yamaguchi T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2024 Mar; 71(3):380-394. PubMed ID: 38261486
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microbubble oscillating in a microvessel filled with viscous fluid: A finite element modeling study.
    Chen C; Gu Y; Tu J; Guo X; Zhang D
    Ultrasonics; 2016 Mar; 66():54-64. PubMed ID: 26651263
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Radial modulation of single microbubbles.
    Emmer M; Vos HJ; Versluis M; de Jong N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Nov; 56(11):2370-9. PubMed ID: 19942524
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bubble-based acoustic radiation force using chirp insonation to reduce standing wave effects.
    Erpelding TN; Hollman KW; O'Donnell M
    Ultrasound Med Biol; 2007 Feb; 33(2):263-9. PubMed ID: 17306697
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanointerrogation of ultrasonic contrast agent microbubbles using atomic force microscopy.
    Sboros V; Glynos E; Pye SD; Moran CM; Butler M; Ross J; Short R; McDicken WN; Koutsos V
    Ultrasound Med Biol; 2006 Apr; 32(4):579-85. PubMed ID: 16616603
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Selective imaging of adherent targeted ultrasound contrast agents.
    Zhao S; Kruse DE; Ferrara KW; Dayton PA
    Phys Med Biol; 2007 Apr; 52(8):2055-72. PubMed ID: 17404455
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Potential contrast improvement in ultrasound pulse inversion imaging using EMD and EEMD.
    Liao AH; Shen CC; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):317-26. PubMed ID: 20178898
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dual-frequency tissue harmonic suppression using phase-coded pulse sequence: proof of concept using a phantom.
    Shen CC; Wang HT
    Ultrasonics; 2013 Mar; 53(3):717-26. PubMed ID: 23218909
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pulse sequences for uniform perfluorocarbon droplet vaporization and ultrasound imaging.
    Puett C; Sheeran PS; Rojas JD; Dayton PA
    Ultrasonics; 2014 Sep; 54(7):2024-33. PubMed ID: 24965563
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Acoustic detection of controlled laser-induced microbubble creation in gelatin.
    Tse C; Zohdy MJ; Ye JY; Norris TB; Balogh LP; Hollman KW; O'Donnell M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):1962-9. PubMed ID: 16422408
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optimization of acoustic scattering from dual-frequency driven microbubbles at the difference frequency.
    Wyczalkowski M; Szeri AJ
    J Acoust Soc Am; 2003 Jun; 113(6):3073-9. PubMed ID: 12822779
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bubble-based acoustic radiation force elasticity imaging.
    Erpelding TN; Hollman KW; O'Donnell M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jun; 52(6):971-9. PubMed ID: 16118978
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High-Order Hadamard-Encoded Transmission for Tissue Background Suppression in Ultrasound Contrast Imaging: Memory Effect and Decoding Schemes.
    Shen CC; Yan JH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Jan; 66(1):26-37. PubMed ID: 30403628
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A dual-frequency excitation technique for enhancing the sub-harmonic emission from encapsulated microbubbles.
    Zhang D; Xi X; Zhang Z; Gong X; Chen G; Wu J
    Phys Med Biol; 2009 Jul; 54(13):4257-72. PubMed ID: 19531846
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transcranial functional ultrasound imaging of the brain using microbubble-enhanced ultrasensitive Doppler.
    Errico C; Osmanski BF; Pezet S; Couture O; Lenkei Z; Tanter M
    Neuroimage; 2016 Jan; 124(Pt A):752-761. PubMed ID: 26416649
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Unbinding of targeted ultrasound contrast agent microbubbles by secondary acoustic forces.
    Garbin V; Overvelde M; Dollet B; de Jong N; Lohse D; Versluis M
    Phys Med Biol; 2011 Oct; 56(19):6161-77. PubMed ID: 21878709
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Surfactant shedding and gas diffusion during pulsed ultrasound through a microbubble contrast agent suspension.
    O'Brien JP; Stride E; Ovenden N
    J Acoust Soc Am; 2013 Aug; 134(2):1416-27. PubMed ID: 23927137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.