These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 29994786)

  • 1. A Review on Accelerometry-Based Gait Analysis and Emerging Clinical Applications.
    Jarchi D; Pope J; Lee TKM; Tamjidi L; Mirzaei A; Sanei S
    IEEE Rev Biomed Eng; 2018; 11():177-194. PubMed ID: 29994786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward Pervasive Gait Analysis With Wearable Sensors: A Systematic Review.
    Chen S; Lach J; Lo B; Yang GZ
    IEEE J Biomed Health Inform; 2016 Nov; 20(6):1521-1537. PubMed ID: 28113185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of accelerometer-based gait recognition to adjuvant clinical gait analysis.
    Tu B; Xu H; Han X
    Technol Health Care; 2019; 27(6):603-611. PubMed ID: 31033466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement.
    Mathie MJ; Coster AC; Lovell NH; Celler BG
    Physiol Meas; 2004 Apr; 25(2):R1-20. PubMed ID: 15132305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gait Partitioning Methods: A Systematic Review.
    Taborri J; Palermo E; Rossi S; Cappa P
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26751449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shoe-integrated sensors in physical rehabilitation.
    Viqueira Villarejo M; García Zapirain B; Méndez Zorrilla A
    Biomed Mater Eng; 2014; 24(6):3523-8. PubMed ID: 25227065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smart Shoe-Assisted Evaluation of Using a Single Trunk/Pocket-Worn Accelerometer to Detect Gait Phases.
    Avvenuti M; Carbonaro N; Cimino MGCA; Cola G; Tognetti A; Vaglini G
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30405020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association between trunk acceleration during walking and clinically assessed balance in patients with stroke.
    Osaka H; Shinkoda K; Watanabe S; Fujita D; Kobara K; Yoshimura Y; Ito T; Suehiro T
    NeuroRehabilitation; 2017; 41(4):783-790. PubMed ID: 29254113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear Predictive Threshold Model for Real-Time Abnormal Gait Detection.
    Hemmatpour M; Ferrero R; Gandino F; Montrucchio B; Rebaudengo M
    J Healthc Eng; 2018; 2018():4750104. PubMed ID: 30046416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantified self and human movement: a review on the clinical impact of wearable sensing and feedback for gait analysis and intervention.
    Shull PB; Jirattigalachote W; Hunt MA; Cutkosky MR; Delp SL
    Gait Posture; 2014; 40(1):11-9. PubMed ID: 24768525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of an Accelerometer to Quantify a Comprehensive Battery of Gait Characteristics in Healthy Older Adults and Parkinson's Disease: Toward Clinical and at Home Use.
    Del Din S; Godfrey A; Rochester L
    IEEE J Biomed Health Inform; 2016 May; 20(3):838-847. PubMed ID: 25850097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerometry: a technique for quantifying movement patterns during walking.
    Kavanagh JJ; Menz HB
    Gait Posture; 2008 Jul; 28(1):1-15. PubMed ID: 18178436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gait and balance analysis for patients with Alzheimer's disease using an inertial-sensor-based wearable instrument.
    Hsu YL; Chung PC; Wang WH; Pai MC; Wang CY; Lin CW; Wu HL; Wang JS
    IEEE J Biomed Health Inform; 2014 Nov; 18(6):1822-30. PubMed ID: 25375679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating bradykinesia severity in Parkinson's disease by analysing gait through a waist-worn sensor.
    Samà A; Pérez-López C; Rodríguez-Martín D; Català A; Moreno-Aróstegui JM; Cabestany J; de Mingo E; Rodríguez-Molinero A
    Comput Biol Med; 2017 May; 84():114-123. PubMed ID: 28351715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of a Trunk Accelerometer System to the Characterization of Gait in Patients With Mild-to-Moderate Parkinson's Disease.
    Demonceau M; Donneau AF; Croisier JL; Skawiniak E; Boutaayamou M; Maquet D; Garraux G
    IEEE J Biomed Health Inform; 2015 Nov; 19(6):1803-8. PubMed ID: 26292350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait Event Detection in Real-World Environment for Long-Term Applications: Incorporating Domain Knowledge Into Time-Frequency Analysis.
    Khandelwal S; Wickstrom N
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1363-1372. PubMed ID: 26955043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of dual-tasking on control of trunk movement during gait: respective effect of manual- and cognitive-task.
    Asai T; Misu S; Doi T; Yamada M; Ando H
    Gait Posture; 2014 Jan; 39(1):54-9. PubMed ID: 23810091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gait characteristic analysis and identification based on the iPhone's accelerometer and gyrometer.
    Sun B; Wang Y; Banda J
    Sensors (Basel); 2014 Sep; 14(9):17037-54. PubMed ID: 25222034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerometers in rehabilitation medicine for older adults.
    Culhane KM; O'Connor M; Lyons D; Lyons GM
    Age Ageing; 2005 Nov; 34(6):556-60. PubMed ID: 16267178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trunk-acceleration based assessment of gait parameters in older persons: a comparison of reliability and validity of four inverted pendulum based estimations.
    Zijlstra A; Zijlstra W
    Gait Posture; 2013 Sep; 38(4):940-4. PubMed ID: 23706507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.