These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 29995031)
1. Thermochemiluminescent semiconducting polymer dots as sensitive nanoprobes for reagentless immunoassay. Andronico LA; Chen L; Mirasoli M; Guardigli M; Quintavalla A; Lombardo M; Trombini C; Chiu DT; Roda A Nanoscale; 2018 Aug; 10(29):14012-14021. PubMed ID: 29995031 [TBL] [Abstract][Full Text] [Related]
2. Organically modified silica nanoparticles doped with new acridine-1,2-dioxetane analogues as thermochemiluminescence reagentless labels for ultrasensitive immunoassays. Di Fusco M; Quintavalla A; Lombardo M; Guardigli M; Mirasoli M; Trombini C; Roda A Anal Bioanal Chem; 2015 Feb; 407(6):1567-76. PubMed ID: 25542582 [TBL] [Abstract][Full Text] [Related]
3. Dioxetane-doped silica nanoparticles as ultrasensitive reagentless thermochemiluminescent labels for bioanalytics. Roda A; Di Fusco M; Quintavalla A; Guardigli M; Mirasoli M; Lombardo M; Trombini C Anal Chem; 2012 Nov; 84(22):9913-9. PubMed ID: 23121217 [TBL] [Abstract][Full Text] [Related]
4. Near-infrared fluorescent semiconducting polymer dots with high brightness and pronounced effect of positioning alkyl chains on the comonomers. Chen CP; Huang YC; Liou SY; Wu PJ; Kuo SY; Chan YH ACS Appl Mater Interfaces; 2014 Dec; 6(23):21585-95. PubMed ID: 25394668 [TBL] [Abstract][Full Text] [Related]
5. Ratiometric temperature sensing with semiconducting polymer dots. Ye F; Wu C; Jin Y; Chan YH; Zhang X; Chiu DT J Am Chem Soc; 2011 Jun; 133(21):8146-9. PubMed ID: 21548583 [TBL] [Abstract][Full Text] [Related]
6. Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting. Wu C; Schneider T; Zeigler M; Yu J; Schiro PG; Burnham DR; McNeill JD; Chiu DT J Am Chem Soc; 2010 Nov; 132(43):15410-7. PubMed ID: 20929226 [TBL] [Abstract][Full Text] [Related]
7. Molecular Engineering and Design of Semiconducting Polymer Dots with Narrow-Band, Near-Infrared Emission for in Vivo Biological Imaging. Ke CS; Fang CC; Yan JY; Tseng PJ; Pyle JR; Chen CP; Lin SY; Chen J; Zhang X; Chan YH ACS Nano; 2017 Mar; 11(3):3166-3177. PubMed ID: 28221751 [TBL] [Abstract][Full Text] [Related]
8. Ultrabright Pdots with a Large Absorbance Cross Section and High Quantum Yield. Zhang J; Yu J; Jiang Y; Chiu DT ACS Appl Mater Interfaces; 2022 Mar; 14(11):13631-13637. PubMed ID: 35258939 [TBL] [Abstract][Full Text] [Related]
10. Development of ultrabright semiconducting polymer dots for ratiometric pH sensing. Chan YH; Wu C; Ye F; Jin Y; Smith PB; Chiu DT Anal Chem; 2011 Feb; 83(4):1448-55. PubMed ID: 21244093 [TBL] [Abstract][Full Text] [Related]
11. Highly fluorescent semiconducting polymer dots for biology and medicine. Wu C; Chiu DT Angew Chem Int Ed Engl; 2013 Mar; 52(11):3086-109. PubMed ID: 23307291 [TBL] [Abstract][Full Text] [Related]
12. Ratiometric pH Sensing and Imaging in Living Cells with Dual-Emission Semiconductor Polymer Dots. Chen P; Ilyas I; He S; Xing Y; Jin Z; Huang C Molecules; 2019 Aug; 24(16):. PubMed ID: 31409040 [TBL] [Abstract][Full Text] [Related]
13. Dual colorimetric and fluorescent sensor based on semiconducting polymer dots for ratiometric detection of lead ions in living cells. Kuo SY; Li HH; Wu PJ; Chen CP; Huang YC; Chan YH Anal Chem; 2015; 87(9):4765-71. PubMed ID: 25822074 [TBL] [Abstract][Full Text] [Related]
14. Importance of having low-density functional groups for generating high-performance semiconducting polymer dots. Zhang X; Yu J; Wu C; Jin Y; Rong Y; Ye F; Chiu DT ACS Nano; 2012 Jun; 6(6):5429-39. PubMed ID: 22607220 [TBL] [Abstract][Full Text] [Related]
15. Semiconducting Polymer Dots for Point-of-Care Biosensing and In Vivo Bioimaging: A Concise Review. Deng S; Li L; Zhang J; Wang Y; Huang Z; Chen H Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671972 [TBL] [Abstract][Full Text] [Related]
16. A BODIPY-Based Donor/Donor-Acceptor System: Towards Highly Efficient Long-Wavelength-Excitable Near-IR Polymer Dots with Narrow and Strong Absorption Features. Chen L; Chen D; Jiang Y; Zhang J; Yu J; DuFort CC; Hingorani SR; Zhang X; Wu C; Chiu DT Angew Chem Int Ed Engl; 2019 May; 58(21):7008-7012. PubMed ID: 30912228 [TBL] [Abstract][Full Text] [Related]
17. Hydroporphyrin-Doped Near-Infrared-Emitting Polymer Dots for Cellular Fluorescence Imaging. Riahin C; Meares A; Esemoto NN; Ptaszek M; LaScola M; Pandala N; Lavik E; Yang M; Stacey G; Hu D; Traeger JC; Orr G; Rosenzweig Z ACS Appl Mater Interfaces; 2022 May; 14(18):20790-20801. PubMed ID: 35451825 [TBL] [Abstract][Full Text] [Related]
18. Colorimetric and Fluorescent Dual-Mode Immunoassay Based on Plasmon-Enhanced Fluorescence of Polymer Dots for Detection of PSA in Whole Blood. You PY; Li FC; Liu MH; Chan YH ACS Appl Mater Interfaces; 2019 Mar; 11(10):9841-9849. PubMed ID: 30784256 [TBL] [Abstract][Full Text] [Related]
19. Size-dependent property and cell labeling of semiconducting polymer dots. Sun K; Chen H; Wang L; Yin S; Wang H; Xu G; Chen D; Zhang X; Wu C; Qin W ACS Appl Mater Interfaces; 2014 Jul; 6(13):10802-12. PubMed ID: 24930393 [TBL] [Abstract][Full Text] [Related]
20. Multicolor fluorescent semiconducting polymer dots with narrow emissions and high brightness. Rong Y; Wu C; Yu J; Zhang X; Ye F; Zeigler M; Gallina ME; Wu IC; Zhang Y; Chan YH; Sun W; Uvdal K; Chiu DT ACS Nano; 2013 Jan; 7(1):376-84. PubMed ID: 23282278 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]