These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 29995064)
81. Bone graft materials in fixation of orthopaedic implants in sheep. Babiker H Dan Med J; 2013 Jul; 60(7):B4680. PubMed ID: 23809979 [TBL] [Abstract][Full Text] [Related]
82. A comparison between enamel matrix derivative and a bioabsorbable membrane to enhance healing around transmucosal immediate post-extraction implants. Cangini F; Cornelini R J Periodontol; 2005 Oct; 76(10):1785-92. PubMed ID: 16253102 [TBL] [Abstract][Full Text] [Related]
83. Assessment of bone repair in critical-size defect in the calvarium of rats after the implantation of tricalcium phosphate beta (β-TCP). de Freitas Silva L; de Carvalho Reis ENR; Barbara TA; Bonardi JP; Garcia IR; de Carvalho PSP; Ponzoni D Acta Histochem; 2017 Jul; 119(6):624-631. PubMed ID: 28732677 [TBL] [Abstract][Full Text] [Related]
84. Bone healing following the use of hydroxyapatite or ionomeric bone substitutes alone or combined with a guided bone regeneration technique: an animal study. Salata LA; Craig GT; Brook IM Int J Oral Maxillofac Implants; 1998; 13(1):44-51. PubMed ID: 9509779 [TBL] [Abstract][Full Text] [Related]
85. A comparative study of microfocus CT and histomorphometry in the evaluation of bone augmentation in rat calvarium. Kochi G; Sato S; Ebihara H; Hirano J; Arai Y; Ito K J Oral Sci; 2010 Jun; 52(2):203-11. PubMed ID: 20587943 [TBL] [Abstract][Full Text] [Related]
86. Bone formation with the combination of simvastatin and calcium sulfate in critical-sized rat calvarial defect. Nyan M; Sato D; Oda M; Machida T; Kobayashi H; Nakamura T; Kasugai S J Pharmacol Sci; 2007 Aug; 104(4):384-6. PubMed ID: 17721043 [TBL] [Abstract][Full Text] [Related]
87. Comparison of Macro-and Micro-porosity of a Titanium Mesh for Guided Bone Regeneration: An Senoo M; Hasuike A; Yamamoto T; Ozawa Y; Watanabe N; Furuhata M; Sato S In Vivo; 2022; 36(1):76-85. PubMed ID: 34972702 [TBL] [Abstract][Full Text] [Related]
88. Effects of Enhanced Hydrophilic Titanium Dioxide-Coated Hydroxyapatite on Bone Regeneration in Rabbit Calvarial Defects. Lee JE; Bark CW; Quy HV; Seo SJ; Lim JH; Kang SA; Lee Y; Lee JM; Suh JY; Kim YG Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30463215 [TBL] [Abstract][Full Text] [Related]
89. Histological Evaluation of Bone Regeneration Using Hydroxyapatite Based Bone Substitute Derived from Antler: An Animal Study. Sargolzaie N; Kadkhodazadeh M; Ebadian AR; Shafieian R; Pourkaveh S; Naghibi N; Ramandie MF J Long Term Eff Med Implants; 2022; 32(1):77-84. PubMed ID: 35377997 [TBL] [Abstract][Full Text] [Related]
90. Screening of Hydroxyapatite Biomaterials for Alveolar Augmentation Using a Rat Calvaria Critical-Size Defect Model: Bone Formation/Maturation and Biomaterials Resolution. Susin C; Lee J; Fiorini T; Koo KT; Schüpbach P; Finger Stadler A; Wikesjö UM Biomolecules; 2022 Nov; 12(11):. PubMed ID: 36421691 [TBL] [Abstract][Full Text] [Related]
91. Guided bone regeneration using a hydrophilic membrane made of unsintered hydroxyapatite and poly(L-lactic acid) in a rat bone-defect model. Ikumi R; Miyahara T; Akino N; Tachikawa N; Kasugai S Dent Mater J; 2018 Nov; 37(6):912-918. PubMed ID: 29962416 [TBL] [Abstract][Full Text] [Related]
92. Bone repair process in calvarial defects using bioactive glass and calcium sulfate barrier. Silveira RL; Machado RA; Silveira CR; Oliveira RB Acta Cir Bras; 2008; 23(4):322-8. PubMed ID: 18641801 [TBL] [Abstract][Full Text] [Related]
93. Bone graft substitutes in modern orthopedics. Parikh SN Orthopedics; 2002 Nov; 25(11):1301-9; quiz 1310-1. PubMed ID: 12452353 [No Abstract] [Full Text] [Related]
94. Bone repair following bone grafting hydroxyapatite guided bone regeneration and infra-red laser photobiomodulation: a histological study in a rodent model. Pinheiro AL; Martinez Gerbi ME; de Assis Limeira F; Carneiro Ponzi EA; Marques AM; Carvalho CM; de Carneiro Santos R; Oliveira PC; Nóia M; Ramalho LM Lasers Med Sci; 2009 Mar; 24(2):234-40. PubMed ID: 18418643 [TBL] [Abstract][Full Text] [Related]
95. Histological examination of bone regeneration achieved by combining grafting with hydroxyapatite and thermoplastic bioresorbable plates. Kojima T; Amizuka N; Suzuki A; de Freitas PH; Yoshizawa M; Kudo A; Saito C; Maeda T J Bone Miner Metab; 2007; 25(6):361-73. PubMed ID: 17968488 [TBL] [Abstract][Full Text] [Related]
96. Guided bone regeneration with subperiosteal implants of PTFE and hydroxyapatite physical barriers in rats. de Macedo NL; de Macedo LG; Matuda Fde S; Ouchi SM; Monteiro AS; Carvalho YR Braz Dent J; 2003; 14(2):119-24. PubMed ID: 12964656 [TBL] [Abstract][Full Text] [Related]
97. Systemic Administration of PTH Supports Vascularization in Segmental Bone Defects Filled with Ceramic-Based Bone Graft Substitute. Freischmidt H; Armbruster J; Bonner E; Guehring T; Nurjadi D; Bechberger M; Sonntag R; Schmidmaier G; Grützner PA; Helbig L Cells; 2021 Aug; 10(8):. PubMed ID: 34440827 [TBL] [Abstract][Full Text] [Related]
98. Effects of alpha-DT cement with hydroxypropyl cellulose on bone augmentation within a titanium cap in the rabbit calvarium. Fukuyama T; Sato S; Fukase Y; Ito K Dent Mater J; 2010 Mar; 29(2):160-6. PubMed ID: 20379026 [TBL] [Abstract][Full Text] [Related]
99. Bone augmentation using small molecules with biodegradable calcium sulfate particles in a vertical onlay graft model in the rabbit calvarium. Kim DH; Cha JK; Song YW; Woo KM; Jung UW J Biomed Mater Res B Appl Biomater; 2020 May; 108(4):1343-1350. PubMed ID: 31471953 [TBL] [Abstract][Full Text] [Related]
100. The Bioresorption and Guided Bone Regeneration of Absorbable Hydroxyapatite-Coated Magnesium Mesh. Byun SH; Lim HK; Kim SM; Lee SM; Kim HE; Lee JH J Craniofac Surg; 2017 Mar; 28(2):518-523. PubMed ID: 28060094 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]