These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 29995272)

  • 21. UnCorrupt SMILES: a novel approach to de novo design.
    Schoenmaker L; Béquignon OJM; Jespers W; van Westen GJP
    J Cheminform; 2023 Feb; 15(1):22. PubMed ID: 36788579
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Variational autoencoder-based chemical latent space for large molecular structures with 3D complexity.
    Ochiai T; Inukai T; Akiyama M; Furui K; Ohue M; Matsumori N; Inuki S; Uesugi M; Sunazuka T; Kikuchi K; Kakeya H; Sakakibara Y
    Commun Chem; 2023 Nov; 6(1):249. PubMed ID: 37973971
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unifying the design space and optimizing linear and nonlinear truss metamaterials by generative modeling.
    Zheng L; Karapiperis K; Kumar S; Kochmann DM
    Nat Commun; 2023 Nov; 14(1):7563. PubMed ID: 37989748
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular substructure tree generative model for de novo drug design.
    Wang S; Song T; Zhang S; Jiang M; Wei Z; Li Z
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35039853
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring Low-Toxicity Chemical Space with Deep Learning for Molecular Generation.
    Yang Y; Wu Z; Yao X; Kang Y; Hou T; Hsieh CY; Liu H
    J Chem Inf Model; 2022 Jul; 62(13):3191-3199. PubMed ID: 35713712
    [TBL] [Abstract][Full Text] [Related]  

  • 26. VTAE: Variational Transformer Autoencoder With Manifolds Learning.
    Shamsolmoali P; Zareapoor M; Zhou H; Tao D; Li X
    IEEE Trans Image Process; 2023; 32():4486-4500. PubMed ID: 37527317
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular Property Prediction and Molecular Design Using a Supervised Grammar Variational Autoencoder.
    Oliveira AF; Da Silva JLF; Quiles MG
    J Chem Inf Model; 2022 Feb; 62(4):817-828. PubMed ID: 35174705
    [TBL] [Abstract][Full Text] [Related]  

  • 28. De Novo Design of Molecules with Multiaction Potential from Differential Gene Expression using Variational Autoencoder.
    Pravalphruekul N; Piriyajitakonkij M; Phunchongharn P; Piyayotai S
    J Chem Inf Model; 2023 Jul; 63(13):3999-4011. PubMed ID: 37347587
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bayesian Optimization in the Latent Space of a Variational Autoencoder for the Generation of Selective FLT3 Inhibitors.
    Chandra R; Horne RI; Vendruscolo M
    J Chem Theory Comput; 2024 Jan; 20(1):469-476. PubMed ID: 38112559
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analyzing drop coalescence in microfluidic devices with a deep learning generative model.
    Zhu K; Cheng S; Kovalchuk N; Simmons M; Guo YK; Matar OK; Arcucci R
    Phys Chem Chem Phys; 2023 Jun; 25(23):15744-15755. PubMed ID: 37232111
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interpretable Machine Learning Models for Molecular Design of Tyrosine Kinase Inhibitors Using Variational Autoencoders and Perturbation-Based Approach of Chemical Space Exploration.
    Krishnan K; Kassab R; Agajanian S; Verkhivker G
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232566
    [TBL] [Abstract][Full Text] [Related]  

  • 32. De novo drug design based on patient gene expression profiles via deep learning.
    Yamanaka C; Uki S; Kaitoh K; Iwata M; Yamanishi Y
    Mol Inform; 2023 Aug; 42(8-9):e2300064. PubMed ID: 37475603
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Latent Factor Decoding of Multi-Channel EEG for Emotion Recognition Through Autoencoder-Like Neural Networks.
    Li X; Zhao Z; Song D; Zhang Y; Pan J; Wu L; Huo J; Niu C; Wang D
    Front Neurosci; 2020; 14():87. PubMed ID: 32194367
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Constrained Bayesian optimization for automatic chemical design using variational autoencoders.
    Griffiths RR; Hernández-Lobato JM
    Chem Sci; 2020 Jan; 11(2):577-586. PubMed ID: 32190274
    [TBL] [Abstract][Full Text] [Related]  

  • 35. LEARNING TO SYNTHESIZE CORTICAL MORPHOLOGICAL CHANGES USING GRAPH CONDITIONAL VARIATIONAL AUTOENCODER.
    Chai Y; Liu M; Duffy BA; Kim H
    Proc IEEE Int Symp Biomed Imaging; 2021 Apr; 2021():1495-1499. PubMed ID: 35330877
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conditional Generative Denoising Autoencoder.
    Karatsiolis S; Schizas CN
    IEEE Trans Neural Netw Learn Syst; 2020 Oct; 31(10):4117-4129. PubMed ID: 31825881
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A multimodal dynamical variational autoencoder for audiovisual speech representation learning.
    Sadok S; Leglaive S; Girin L; Alameda-Pineda X; Séguier R
    Neural Netw; 2024 Apr; 172():106120. PubMed ID: 38266474
    [TBL] [Abstract][Full Text] [Related]  

  • 38.
    Marques G; Leswing K; Robertson T; Giesen D; Halls MD; Goldberg A; Marshall K; Staker J; Morisato T; Maeshima H; Arai H; Sasago M; Fujii E; Matsuzawa NN
    J Phys Chem A; 2021 Aug; 125(33):7331-7343. PubMed ID: 34342466
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep generative design of porous organic cages
    Zhou J; Mroz A; Jelfs KE
    Digit Discov; 2023 Dec; 2(6):1925-1936. PubMed ID: 38054102
    [TBL] [Abstract][Full Text] [Related]  

  • 40. De novo molecular design with deep molecular generative models for PPI inhibitors.
    Wang J; Chu Y; Mao J; Jeon HN; Jin H; Zeb A; Jang Y; Cho KH; Song T; No KT
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35830870
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.