These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 29995353)
21. Reduction/Oxidation-Responsive Hierarchical Nanoparticles with Self-Driven Degradability for Enhanced Tumor Penetration and Precise Chemotherapy. Yin S; Gao Y; Zhang Y; Xu J; Zhu J; Zhou F; Gu X; Wang G; Li J ACS Appl Mater Interfaces; 2020 Apr; 12(16):18273-18291. PubMed ID: 32223148 [TBL] [Abstract][Full Text] [Related]
22. Well-defined polymer-drug conjugate engineered with redox and pH-sensitive release mechanism for efficient delivery of paclitaxel. Lv S; Tang Z; Zhang D; Song W; Li M; Lin J; Liu H; Chen X J Control Release; 2014 Nov; 194():220-7. PubMed ID: 25220162 [TBL] [Abstract][Full Text] [Related]
23. Redox-Sensitive Micelles Based on O,N-Hydroxyethyl Chitosan-Octylamine Conjugates for Triggered Intracellular Delivery of Paclitaxel. Huo M; Liu Y; Wang L; Yin T; Qin C; Xiao Y; Yin L; Liu J; Zhou J Mol Pharm; 2016 Jun; 13(6):1750-62. PubMed ID: 27100204 [TBL] [Abstract][Full Text] [Related]
24. Biodegradable polyurethane micelles with pH and reduction responsive properties for intracellular drug delivery. Guan Y; Su Y; Zhao L; Meng F; Wang Q; Yao Y; Luo J Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1221-1230. PubMed ID: 28415410 [TBL] [Abstract][Full Text] [Related]
25. In vivo tailor-made protein corona of a prodrug-based nanoassembly fabricated by redox dual-sensitive paclitaxel prodrug for the superselective treatment of breast cancer. Zhang D; Yang J; Guan J; Yang B; Zhang S; Sun M; Yang R; Zhang T; Zhang R; Kan Q; Zhang H; He Z; Shang L; Sun J Biomater Sci; 2018 Aug; 6(9):2360-2374. PubMed ID: 30019051 [TBL] [Abstract][Full Text] [Related]
26. Redox-sensitive self-assembled nanoparticles based on alpha-tocopherol succinate-modified heparin for intracellular delivery of paclitaxel. Yang X; Cai X; Yu A; Xi Y; Zhai G J Colloid Interface Sci; 2017 Jun; 496():311-326. PubMed ID: 28237749 [TBL] [Abstract][Full Text] [Related]
27. Free paclitaxel loaded PEGylated-paclitaxel nanoparticles: preparation and comparison with other paclitaxel systems in vitro and in vivo. Lu J; Chuan X; Zhang H; Dai W; Wang X; Wang X; Zhang Q Int J Pharm; 2014 Aug; 471(1-2):525-35. PubMed ID: 24858391 [TBL] [Abstract][Full Text] [Related]
29. Nanoparticles Containing High Loads of Paclitaxel-Silicate Prodrugs: Formulation, Drug Release, and Anticancer Efficacy. Han J; Michel AR; Lee HS; Kalscheuer S; Wohl A; Hoye TR; McCormick AV; Panyam J; Macosko CW Mol Pharm; 2015 Dec; 12(12):4329-35. PubMed ID: 26505116 [TBL] [Abstract][Full Text] [Related]
30. Utilizing glutathione-triggered nanoparticles to enhance chemotherapy of lung cancer by reprograming the tumor microenvironment. Cui T; Li X; Shu Y; Huang X; Wang Y; Zhang W Int J Pharm; 2018 Dec; 552(1-2):16-26. PubMed ID: 30253209 [TBL] [Abstract][Full Text] [Related]
31. Characterization, pharmacokinetics and disposition of novel nanoscale preparations of paclitaxel. Wang C; Wang Y; Wang Y; Fan M; Luo F; Qian Z Int J Pharm; 2011 Jul; 414(1-2):251-9. PubMed ID: 21596124 [TBL] [Abstract][Full Text] [Related]
32. Redox-responsive magnetic nanovectors self-assembled from amphiphilic polymer and iron oxide nanoparticles for a remotely targeted delivery of paclitaxel. Ding X; Jiang W; Dong L; Hong C; Luo Z; Hu Y; Cai K J Mater Chem B; 2021 Aug; 9(30):6037-6043. PubMed ID: 34259307 [TBL] [Abstract][Full Text] [Related]
33. Development of redox-responsive theranostic nanoparticles for near-infrared fluorescence imaging-guided photodynamic/chemotherapy of tumor. Yang X; Shi X; Ji J; Zhai G Drug Deliv; 2018 Nov; 25(1):780-796. PubMed ID: 29542333 [TBL] [Abstract][Full Text] [Related]
34. Redox-responsive FRET-based polymer dot with BODIPY for fluorescence imaging-guided chemotherapy of tumor. Kim YK; Lee JE; Ryplida B; Choi CA; Mazrad ZAI; Lee G; Lee S; In I; Jeong JH; Park SY Eur J Pharm Biopharm; 2018 Nov; 132():200-210. PubMed ID: 30266668 [TBL] [Abstract][Full Text] [Related]
35. Reduction-Triggered Paclitaxel Release Nano-Hybrid System Based on Core-Crosslinked Polymer Dots with a pH-Responsive Shell-Cleavable Colorimetric Biosensor. Kim SG; Ryplida B; Phuong PTM; Won HJ; Lee G; Bhang SH; Park SY Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31661903 [TBL] [Abstract][Full Text] [Related]
36. Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer. He Z; Huang J; Xu Y; Zhang X; Teng Y; Huang C; Wu Y; Zhang X; Zhang H; Sun W Oncotarget; 2015 Dec; 6(39):42150-68. PubMed ID: 26517524 [TBL] [Abstract][Full Text] [Related]
37. RGD peptide-modified, paclitaxel prodrug-based, dual-drugs loaded, and redox-sensitive lipid-polymer nanoparticles for the enhanced lung cancer therapy. Wang G; Wang Z; Li C; Duan G; Wang K; Li Q; Tao T Biomed Pharmacother; 2018 Oct; 106():275-284. PubMed ID: 29966971 [TBL] [Abstract][Full Text] [Related]
38. Biodegradable mixed MPEG-SS-2SA/TPGS micelles for triggered intracellular release of paclitaxel and reversing multidrug resistance. Dong K; Yan Y; Wang P; Shi X; Zhang L; Wang K; Xing J; Dong Y Int J Nanomedicine; 2016; 11():5109-5123. PubMed ID: 27785018 [TBL] [Abstract][Full Text] [Related]
39. Imaging-guided photoacoustic drug release and synergistic chemo-photoacoustic therapy with paclitaxel-containing nanoparticles. Zhong J; Yang S; Wen L; Xing D J Control Release; 2016 Mar; 226():77-87. PubMed ID: 26860283 [TBL] [Abstract][Full Text] [Related]
40. Self-Strengthened Oxidation-Responsive Bioactivating Prodrug Nanosystem with Sequential and Synergistically Facilitated Drug Release for Treatment of Breast Cancer. Wang K; Yang B; Ye H; Zhang X; Song H; Wang X; Li N; Wei L; Wang Y; Zhang H; Kan Q; He Z; Wang D; Sun J ACS Appl Mater Interfaces; 2019 May; 11(21):18914-18922. PubMed ID: 31055911 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]