These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 29995428)

  • 1. Radiative Pumping and Propagation of Plexcitons in Diffractive Plasmonic Crystals.
    Zakharko Y; Rother M; Graf A; Hähnlein B; Brohmann M; Pezoldt J; Zaumseil J
    Nano Lett; 2018 Aug; 18(8):4927-4933. PubMed ID: 29995428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plexcitonic crystals: a tunable platform for light-matter interactions.
    Karademir E; Balci S; Kocabas C; Aydinli A
    Opt Express; 2014 Sep; 22(18):21912-20. PubMed ID: 25321566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong Coupling of Two-Dimensional Excitons and Plasmonic Photonic Crystals: Microscopic Theory Reveals Triplet Spectra.
    Greten L; Salzwedel R; Göde T; Greten D; Reich S; Hughes S; Selig M; Knorr A
    ACS Photonics; 2024 Apr; 11(4):1396-1411. PubMed ID: 38645994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser assisted synthesis of anisotropic metal nanocrystals and strong light-matter coupling in decahedral bimetallic nanocrystals.
    Balci FM; Sarisozen S; Polat N; Guvenc CM; Karadeniz U; Tertemiz A; Balci S
    Nanoscale Adv; 2021 Mar; 3(6):1674-1681. PubMed ID: 36132566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra hybrid plasmonics: strong coupling of plexcitons with plasmon polaritons.
    Balci S; Kocabas C
    Opt Lett; 2015 Jul; 40(14):3424-7. PubMed ID: 26176485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers.
    Schlather AE; Large N; Urban AS; Nordlander P; Halas NJ
    Nano Lett; 2013 Jul; 13(7):3281-6. PubMed ID: 23746061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastrong coupling of plasmons and excitons in a nanoshell.
    Cacciola A; Di Stefano O; Stassi R; Saija R; Savasta S
    ACS Nano; 2014 Nov; 8(11):11483-92. PubMed ID: 25337782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Radiative Energy Shifts under Strong Oscillating Fields.
    Zheng P; Kang J; Paria D; Kang JU; Barman I
    Small; 2021 Jan; 17(3):e2007244. PubMed ID: 33354911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong plasmon-exciton coupling between lithographically defined single metal nanoparticles and monolayer WSe
    Yan X; Wei H
    Nanoscale; 2020 May; 12(17):9708-9716. PubMed ID: 32323700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plexciton Dirac points and topological modes.
    Yuen-Zhou J; Saikin SK; Zhu T; Onbasli MC; Ross CA; Bulovic V; Baldo MA
    Nat Commun; 2016 Jun; 7():11783. PubMed ID: 27278258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Mechanism of Manipulating Chirality and Chiral Sensing Based on Chiral Plexcitons in a Strong-Coupling Regime.
    Liang X; Liang K; Deng X; He C; Zhou P; Li J; Qin J; Jin L; Yu L
    Nanomaterials (Basel); 2024 Apr; 14(8):. PubMed ID: 38668199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plexcitonic Optical Chirality: Strong Exciton-Plasmon Coupling in Chiral J-Aggregate-Metal Nanoparticle Complexes.
    Wu F; Guo J; Huang Y; Liang K; Jin L; Li J; Deng X; Jiao R; Liu Y; Zhang J; Zhang W; Yu L
    ACS Nano; 2021 Feb; 15(2):2292-2300. PubMed ID: 33356158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manipulating Coherent Plasmon-Exciton Interaction in a Single Silver Nanorod on Monolayer WSe
    Zheng D; Zhang S; Deng Q; Kang M; Nordlander P; Xu H
    Nano Lett; 2017 Jun; 17(6):3809-3814. PubMed ID: 28530102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-Demand Coupling of Electrically Generated Excitons with Surface Plasmons via Voltage-Controlled Emission Zone Position.
    Zakharko Y; Held M; Sadafi FZ; Gannott F; Mahdavi A; Peschel U; Taylor RN; Zaumseil J
    ACS Photonics; 2016 Jan; 3(1):1-7. PubMed ID: 26878028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plexcitons: The Role of Oscillator Strengths and Spectral Widths in Determining Strong Coupling.
    Thomas R; Thomas A; Pullanchery S; Joseph L; Somasundaran SM; Swathi RS; Gray SK; Thomas KG
    ACS Nano; 2018 Jan; 12(1):402-415. PubMed ID: 29261287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Converting Plasmonic Light Scattering to Confined Light Absorption and Creating Plexcitons by Coupling a Gold Nano-pyramid Array onto a Silica-Gold Film.
    Zheng P; Kasani S; Wu N
    Nanoscale Horiz; 2019 Mar; 4(2):516-525. PubMed ID: 31463080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecularly Detailed View of Strong Coupling in Supramolecular Plexcitonic Nanohybrids.
    Parolin G; Peruffo N; Mancin F; Collini E; Corni S
    Nano Lett; 2024 Feb; 24(7):2273-2281. PubMed ID: 38261782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering the Aggregation of Dyes on Ligand-Shell Protected Gold Nanoparticles to Promote Plexcitons Formation.
    Peruffo N; Parolin G; Collini E; Corni S; Mancin F
    Nanomaterials (Basel); 2022 Apr; 12(7):. PubMed ID: 35407298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning the Plexcitonic Optical Chirality Using Discrete Structurally Chiral Plasmonic Nanoparticles.
    Cheng Q; Yang J; Sun L; Liu C; Yang G; Tao Y; Sun X; Zhang B; Xu H; Zhang Q
    Nano Lett; 2023 Dec; 23(23):11376-11384. PubMed ID: 38038244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.