These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 29995591)
1. Energy Spectra of Protons and Generated Secondary Electrons around the Bragg Peak in Materials of Interest in Proton Therapy. de Vera P; Abril I; Garcia-Molina R Radiat Res; 2018 Sep; 190(3):282-297. PubMed ID: 29995591 [TBL] [Abstract][Full Text] [Related]
2. Experimental depth dose curves of a 67.5 MeV proton beam for benchmarking and validation of Monte Carlo simulation. Faddegon BA; Shin J; Castenada CM; Ramos-Méndez J; Daftari IK Med Phys; 2015 Jul; 42(7):4199-210. PubMed ID: 26133619 [TBL] [Abstract][Full Text] [Related]
3. Technical Note: Experimental verification of magnetic field-induced beam deflection and Bragg peak displacement for MR-integrated proton therapy. Schellhammer SM; Gantz S; Lühr A; Oborn BM; Bussmann M; Hoffmann AL Med Phys; 2018 Jul; 45(7):3429-3434. PubMed ID: 29763970 [TBL] [Abstract][Full Text] [Related]
4. Nuclear collision processes around the Bragg peak in proton therapy. Matsuzaki Y; Date H; Sutherland KL; Kiyanagi Y Radiol Phys Technol; 2010 Jan; 3(1):84-92. PubMed ID: 20821107 [TBL] [Abstract][Full Text] [Related]
5. A combined molecular dynamics and Monte Carlo simulation of the spatial distribution of energy deposition by proton beams in liquid water. Garcia-Molina R; Abril I; Heredia-Avalos S; Kyriakou I; Emfietzoglou D Phys Med Biol; 2011 Oct; 56(19):6475-93. PubMed ID: 21934189 [TBL] [Abstract][Full Text] [Related]
6. A pencil beam algorithm for magnetic resonance image-guided proton therapy. Padilla-Cabal F; Georg D; Fuchs H Med Phys; 2018 May; 45(5):2195-2204. PubMed ID: 29532490 [TBL] [Abstract][Full Text] [Related]
7. Monte Carlo calculated stopping-power ratios, water/air, for clinical proton dosimetry (50-250 MeV). Medin J; Andreo P Phys Med Biol; 1997 Jan; 42(1):89-105. PubMed ID: 9015811 [TBL] [Abstract][Full Text] [Related]
8. Dose distribution outside the target volume for 170-MeV proton beam. Pachnerová Brabcová K; Ambrožová I; Kubančák J; Puchalska M; Vondráček V; Molokanov AG; Sihver L; Davídková M Radiat Prot Dosimetry; 2014 Oct; 161(1-4):410-6. PubMed ID: 24759915 [TBL] [Abstract][Full Text] [Related]
9. Monte Carlo simulations of therapeutic proton beams for relative biological effectiveness of double-strand break. Wang CC; Hsiao Y; Lee CC; Chao TC; Wang CC; Tung CJ Int J Radiat Biol; 2012 Jan; 88(1-2):158-63. PubMed ID: 21823821 [TBL] [Abstract][Full Text] [Related]
10. Monte Carlo simulation and analysis of proton energy-deposition patterns in the Bragg peak. González-Muñoz G; Tilly N; Fernández-Varea JM; Ahnesjö A Phys Med Biol; 2008 Jun; 53(11):2857-75. PubMed ID: 18460751 [TBL] [Abstract][Full Text] [Related]
11. Latent uncertainties of the precalculated track Monte Carlo method. Renaud MA; Roberge D; Seuntjens J Med Phys; 2015 Jan; 42(1):479-90. PubMed ID: 25563287 [TBL] [Abstract][Full Text] [Related]
12. Analysis of the physical interactions of therapeutic proton beams in water with the use of Geant4 Monte Carlo calculations. Morávek Z; Bogner L Z Med Phys; 2009; 19(3):174-81. PubMed ID: 19761094 [TBL] [Abstract][Full Text] [Related]
13. Technical note: Extraction of proton pencil beam energy spectrum from measured integral depth dose in a cyclotron proton beam system. Yao W; Farr JB Med Phys; 2021 Nov; 48(11):7504-7511. PubMed ID: 34609749 [TBL] [Abstract][Full Text] [Related]
14. Oblique incidence for broad monoenergetic proton beams. Jette D; Yuan J; Chen W Med Phys; 2010 Nov; 37(11):5683-90. PubMed ID: 21158280 [TBL] [Abstract][Full Text] [Related]
15. Monte Carlo simulations of ³He ion physical characteristics in a water phantom and evaluation of radiobiological effectiveness. Taleei R; Guan F; Peeler C; Bronk L; Patel D; Mirkovic D; Grosshans DR; Mohan R; Titt U Med Phys; 2016 Feb; 43(2):761-76. PubMed ID: 26843239 [TBL] [Abstract][Full Text] [Related]
16. Parameterization of multiple Bragg curves for scanning proton beams using simultaneous fitting of multiple curves. Zhang X; Liu W; Li Y; Li X; Quan M; Mohan R; Anand A; Sahoo N; Gillin M; Zhu XR Phys Med Biol; 2011 Dec; 56(24):7725-35. PubMed ID: 22085829 [TBL] [Abstract][Full Text] [Related]
17. Water and tissue equivalence of a new PRESAGE(®) formulation for 3D proton beam dosimetry: a Monte Carlo study. Gorjiara T; Kuncic Z; Doran S; Adamovics J; Baldock C Med Phys; 2012 Nov; 39(11):7071-9. PubMed ID: 23127098 [TBL] [Abstract][Full Text] [Related]
18. Magnetic field effects on particle beams and their implications for dose calculation in MR-guided particle therapy. Fuchs H; Moser P; Gröschl M; Georg D Med Phys; 2017 Mar; 44(3):1149-1156. PubMed ID: 28090633 [TBL] [Abstract][Full Text] [Related]
19. A mathematical expression for depth-light curves of therapeutic proton beams in a quenching scintillator. Kelleter L; Jolly S Med Phys; 2020 Jun; 47(5):2300-2308. PubMed ID: 32072646 [TBL] [Abstract][Full Text] [Related]
20. An image-guided precision proton radiation platform for preclinical in vivo research. Ford E; Emery R; Huff D; Narayanan M; Schwartz J; Cao N; Meyer J; Rengan R; Zeng J; Sandison G; Laramore G; Mayr N Phys Med Biol; 2017 Jan; 62(1):43-58. PubMed ID: 27973343 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]