These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29995608)

  • 1. A quantitative framework for motion visibility in human cortex.
    Birman D; Gardner JL
    J Neurophysiol; 2018 Oct; 120(4):1824-1839. PubMed ID: 29995608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determinants of motion response anisotropies in human early visual cortex: the role of configuration and eccentricity.
    Maloney RT; Watson TL; Clifford CW
    Neuroimage; 2014 Oct; 100():564-79. PubMed ID: 24996120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human visual and parietal cortex encode visual choices independent of motor plans.
    Hebart MN; Donner TH; Haynes JD
    Neuroimage; 2012 Nov; 63(3):1393-403. PubMed ID: 22922368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct effects of attention on the neural responses to form and motion processing: a SSVEP source-imaging study.
    Palomares M; Ales JM; Wade AR; Cottereau BR; Norcia AM
    J Vis; 2012 Sep; 12(10):15. PubMed ID: 23019120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional signalers of changes in visual stimuli: cortical responses to increments and decrements in motion coherence.
    Costagli M; Ueno K; Sun P; Gardner JL; Wan X; Ricciardi E; Pietrini P; Tanaka K; Cheng K
    Cereb Cortex; 2014 Jan; 24(1):110-8. PubMed ID: 23010749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlates of Perceptual Orientation Biases in Human Primary Visual Cortex.
    Patten ML; Mannion DJ; Clifford CWG
    J Neurosci; 2017 May; 37(18):4744-4750. PubMed ID: 28385875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A binocular rivalry study of motion perception in the human brain.
    Moutoussis K; Keliris G; Kourtzi Z; Logothetis N
    Vision Res; 2005 Aug; 45(17):2231-43. PubMed ID: 15924938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perceptual learning modifies the functional specializations of visual cortical areas.
    Chen N; Cai P; Zhou T; Thompson B; Fang F
    Proc Natl Acad Sci U S A; 2016 May; 113(20):5724-9. PubMed ID: 27051066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of inferior frontal junction in controlling the spatially global effect of feature-based attention in human visual areas.
    Zhang X; Mlynaryk N; Ahmed S; Japee S; Ungerleider LG
    PLoS Biol; 2018 Jun; 16(6):e2005399. PubMed ID: 29939981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictive coding for motion stimuli in human early visual cortex.
    Schellekens W; van Wezel RJ; Petridou N; Ramsey NF; Raemaekers M
    Brain Struct Funct; 2016 Mar; 221(2):879-90. PubMed ID: 25445839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radial biases in the processing of motion and motion-defined contours by human visual cortex.
    Clifford CW; Mannion DJ; McDonald JS
    J Neurophysiol; 2009 Nov; 102(5):2974-81. PubMed ID: 19759326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct neural correlates of attending speed vs. coherence of motion.
    Kau S; Strumpf H; Merkel C; Stoppel CM; Heinze HJ; Hopf JM; Schoenfeld MA
    Neuroimage; 2013 Jan; 64():299-307. PubMed ID: 22963856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential dependency on motion coherence in subregions of the human MT+ complex.
    Becker HG; Erb M; Haarmeier T
    Eur J Neurosci; 2008 Oct; 28(8):1674-85. PubMed ID: 18973585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selectivity of human retinotopic visual cortex to S-cone-opponent, L/M-cone-opponent and achromatic stimulation.
    Mullen KT; Dumoulin SO; McMahon KL; de Zubicaray GI; Hess RF
    Eur J Neurosci; 2007 Jan; 25(2):491-502. PubMed ID: 17284191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Representation of shapes, edges, and surfaces across multiple cues in the human visual cortex.
    Vinberg J; Grill-Spector K
    J Neurophysiol; 2008 Mar; 99(3):1380-93. PubMed ID: 18171705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Representation of motion boundaries in retinotopic human visual cortical areas.
    Reppas JB; Niyogi S; Dale AM; Sereno MI; Tootell RB
    Nature; 1997 Jul; 388(6638):175-9. PubMed ID: 9217157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visibility reflects dynamic changes of effective connectivity between V1 and fusiform cortex.
    Haynes JD; Driver J; Rees G
    Neuron; 2005 Jun; 46(5):811-21. PubMed ID: 15924866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apparent Motion Induces Activity Suppression in Early Visual Cortex and Impairs Visual Detection.
    Shen L; Han B; de Lange FP
    J Neurosci; 2020 Jul; 40(28):5471-5479. PubMed ID: 32513825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictions to motion stimuli in human early visual cortex: Effects of motion displacement on motion predictability.
    Schellekens W; Ramsey NF; Raemaekers M
    Neuroimage; 2015 Sep; 118():118-25. PubMed ID: 26026815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sharpened cortical tuning and enhanced cortico-cortical communication contribute to the long-term neural mechanisms of visual motion perceptual learning.
    Chen N; Bi T; Zhou T; Li S; Liu Z; Fang F
    Neuroimage; 2015 Jul; 115():17-29. PubMed ID: 25921327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.