BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29996093)

  • 1. A Hepatocyte FOXN3-α Cell Glucagon Axis Regulates Fasting Glucose.
    Karanth S; Adams JD; Serrano MLA; Quittner-Strom EB; Simcox J; Villanueva CJ; Ozcan L; Holland WL; Yost HJ; Vella A; Schlegel A
    Cell Rep; 2018 Jul; 24(2):312-319. PubMed ID: 29996093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FOXN3 controls liver glucose metabolism by regulating gluconeogenic substrate selection.
    Karanth S; Chaurasia B; Bowman FM; Tippetts TS; Holland WL; Summers SA; Schlegel A
    Physiol Rep; 2019 Sep; 7(18):e14238. PubMed ID: 31552709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FOXN3 Regulates Hepatic Glucose Utilization.
    Karanth S; Zinkhan EK; Hill JT; Yost HJ; Schlegel A
    Cell Rep; 2016 Jun; 15(12):2745-55. PubMed ID: 27292639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FOXN3 hyperglycemic risk allele and insulin sensitivity in humans.
    Erickson ML; Karanth S; Ravussin E; Schlegel A
    BMJ Open Diabetes Res Care; 2019; 7(1):e000688. PubMed ID: 31543974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The nuclear bile acid receptor FXR is a PKA- and FOXA2-sensitive activator of fasting hepatic gluconeogenesis.
    Ploton M; Mazuy C; Gheeraert C; Dubois V; Berthier A; Dubois-Chevalier J; Maréchal X; Bantubungi K; Diemer H; Cianférani S; Strub JM; Helleboid-Chapman A; Eeckhoute J; Staels B; Lefebvre P
    J Hepatol; 2018 Nov; 69(5):1099-1109. PubMed ID: 29981427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PHD3 regulates glucose metabolism by suppressing stress-induced signalling and optimising gluconeogenesis and insulin signalling in hepatocytes.
    Yano H; Sakai M; Matsukawa T; Yagi T; Naganuma T; Mitsushima M; Iida S; Inaba Y; Inoue H; Unoki-Kubota H; Kaburagi Y; Asahara SI; Kido Y; Minami S; Kasuga M; Matsumoto M
    Sci Rep; 2018 Sep; 8(1):14290. PubMed ID: 30250231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of blood glucose in the absence of hepatic glucose production during prolonged fasting in mice: induction of renal and intestinal gluconeogenesis by glucagon.
    Mutel E; Gautier-Stein A; Abdul-Wahed A; Amigó-Correig M; Zitoun C; Stefanutti A; Houberdon I; Tourette JA; Mithieux G; Rajas F
    Diabetes; 2011 Dec; 60(12):3121-31. PubMed ID: 22013018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hepatic FOXQ1 transcription factor regulates glucose metabolism in mice.
    Cui Y; Qiao A; Jiao T; Zhang H; Xue Y; Zou Y; Cui A; Fang F; Chang Y
    Diabetologia; 2016 Oct; 59(10):2229-39. PubMed ID: 27421728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PGC1A regulates the IRS1:IRS2 ratio during fasting to influence hepatic metabolism downstream of insulin.
    Besse-Patin A; Jeromson S; Levesque-Damphousse P; Secco B; Laplante M; Estall JL
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4285-4290. PubMed ID: 30770439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium signaling through CaMKII regulates hepatic glucose production in fasting and obesity.
    Ozcan L; Wong CC; Li G; Xu T; Pajvani U; Park SK; Wronska A; Chen BX; Marks AR; Fukamizu A; Backs J; Singer HA; Yates JR; Accili D; Tabas I
    Cell Metab; 2012 May; 15(5):739-51. PubMed ID: 22503562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zbtb7c is a critical gluconeogenic transcription factor that induces glucose-6-phosphatase and phosphoenylpyruvate carboxykinase 1 genes expression during mice fasting.
    Choi WI; Yoon JH; Song JY; Jeon BN; Park JM; Koh DI; Ahn YH; Kim KS; Lee IK; Hur MW
    Biochim Biophys Acta Gene Regul Mech; 2019 Jun; 1862(6):643-656. PubMed ID: 30959128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fasting Hormones Synergistically Induce Amino Acid Catabolism Genes to Promote Gluconeogenesis.
    Korenfeld N; Finkel M; Buchshtab N; Bar-Shimon M; Charni-Natan M; Goldstein I
    Cell Mol Gastroenterol Hepatol; 2021; 12(3):1021-1036. PubMed ID: 33957303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inactivation of NF-κB2 (p52) restrains hepatic glucagon response via preserving PDE4B induction.
    Zhang WS; Pan A; Zhang X; Ying A; Ma G; Liu BL; Qi LW; Liu Q; Li P
    Nat Commun; 2019 Sep; 10(1):4303. PubMed ID: 31541100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting hepatic glutaminase activity to ameliorate hyperglycemia.
    Miller RA; Shi Y; Lu W; Pirman DA; Jatkar A; Blatnik M; Wu H; Cárdenas C; Wan M; Foskett JK; Park JO; Zhang Y; Holland WL; Rabinowitz JD; Birnbaum MJ
    Nat Med; 2018 May; 24(4):518-524. PubMed ID: 29578539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HIF2α Is an Essential Molecular Brake for Postprandial Hepatic Glucagon Response Independent of Insulin Signaling.
    Ramakrishnan SK; Zhang H; Takahashi S; Centofanti B; Periyasamy S; Weisz K; Chen Z; Uhler MD; Rui L; Gonzalez FJ; Shah YM
    Cell Metab; 2016 Mar; 23(3):505-16. PubMed ID: 26853750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of Foxo1 function is associated with improved fasting glycemia in diabetic mice.
    Altomonte J; Richter A; Harbaran S; Suriawinata J; Nakae J; Thung SN; Meseck M; Accili D; Dong H
    Am J Physiol Endocrinol Metab; 2003 Oct; 285(4):E718-28. PubMed ID: 12783775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CD38-mediated Ca(2+) signaling contributes to glucagon-induced hepatic gluconeogenesis.
    Rah SY; Kim UH
    Sci Rep; 2015 Jun; 5():10741. PubMed ID: 26038839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased glucose tolerance and reduced adiposity in the absence of fasting hypoglycemia in mice with liver-specific Gs alpha deficiency.
    Chen M; Gavrilova O; Zhao WQ; Nguyen A; Lorenzo J; Shen L; Nackers L; Pack S; Jou W; Weinstein LS
    J Clin Invest; 2005 Nov; 115(11):3217-27. PubMed ID: 16239968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of the glucocorticoid receptor in hepatocytes leads to fasting hypoglycemia and ameliorates hyperglycemia in streptozotocin-induced diabetes mellitus.
    Opherk C; Tronche F; Kellendonk C; Kohlmüller D; Schulze A; Schmid W; Schütz G
    Mol Endocrinol; 2004 Jun; 18(6):1346-53. PubMed ID: 15031319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EP
    Higuchi S; Fujikawa R; Nakatsuji M; Yasui M; Ikedo T; Nagata M; Mishima K; Irie K; Matsumoto M; Yokode M; Minami M
    Am J Physiol Endocrinol Metab; 2019 Mar; 316(3):E410-E417. PubMed ID: 30562059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.