BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 29996103)

  • 1. NAD
    Pajuelo D; Gonzalez-Juarbe N; Tak U; Sun J; Orihuela CJ; Niederweis M
    Cell Rep; 2018 Jul; 24(2):429-440. PubMed ID: 29996103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NAD hydrolysis by the tuberculosis necrotizing toxin induces lethal oxidative stress in macrophages.
    Pajuelo D; Gonzalez-Juarbe N; Niederweis M
    Cell Microbiol; 2020 Jan; 22(1):e13115. PubMed ID: 31509891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Susceptibility of Mycobacterium tuberculosis-infected host cells to phospho-MLKL driven necroptosis is dependent on cell type and presence of TNFα.
    Butler RE; Krishnan N; Garcia-Jimenez W; Francis R; Martyn A; Mendum T; Felemban S; Locker N; Salguero FJ; Robertson B; Stewart GR
    Virulence; 2017 Nov; 8(8):1820-1832. PubMed ID: 28892415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The tuberculosis necrotizing toxin is an NAD
    Tak U; Vlach J; Garza-Garcia A; William D; Danilchanka O; de Carvalho LPS; Saad JS; Niederweis M
    J Biol Chem; 2019 Mar; 294(9):3024-3036. PubMed ID: 30593509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The tuberculosis necrotizing toxin kills macrophages by hydrolyzing NAD.
    Sun J; Siroy A; Lokareddy RK; Speer A; Doornbos KS; Cingolani G; Niederweis M
    Nat Struct Mol Biol; 2015 Sep; 22(9):672-8. PubMed ID: 26237511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cisatracurium besylate rescues Mycobacterium Tuberculosis-infected macrophages from necroptosis and enhances the bactericidal effect of isoniazid.
    Wen Q; Zhang J; Zhang Z; Chen L; Liu H; Han Z; Chen Y; Wang K; Liu J; Sai N; Zhou X; Zhou C; Hu S; Ma L
    Int Immunopharmacol; 2023 Jul; 120():110291. PubMed ID: 37182451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Necroptotic signaling is primed in Mycobacterium tuberculosis-infected macrophages, but its pathophysiological consequence in disease is restricted.
    Stutz MD; Ojaimi S; Allison C; Preston S; Arandjelovic P; Hildebrand JM; Sandow JJ; Webb AI; Silke J; Alexander WS; Pellegrini M
    Cell Death Differ; 2018 May; 25(5):951-965. PubMed ID: 29229989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RIPK3-MLKL-mediated necroinflammation contributes to AKI progression to CKD.
    Chen H; Fang Y; Wu J; Chen H; Zou Z; Zhang X; Shao J; Xu Y
    Cell Death Dis; 2018 Aug; 9(9):878. PubMed ID: 30158627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RIPK1 inhibits ZBP1-driven necroptosis during development.
    Newton K; Wickliffe KE; Maltzman A; Dugger DL; Strasser A; Pham VC; Lill JR; Roose-Girma M; Warming S; Solon M; Ngu H; Webster JD; Dixit VM
    Nature; 2016 Dec; 540(7631):129-133. PubMed ID: 27819682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CYLD Proteolysis Protects Macrophages from TNF-Mediated Auto-necroptosis Induced by LPS and Licensed by Type I IFN.
    Legarda D; Justus SJ; Ang RL; Rikhi N; Li W; Moran TM; Zhang J; Mizoguchi E; Zelic M; Kelliher MA; Blander JM; Ting AT
    Cell Rep; 2016 Jun; 15(11):2449-61. PubMed ID: 27264187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FKBP12 mediates necroptosis by initiating RIPK1-RIPK3-MLKL signal transduction in response to TNF receptor 1 ligation.
    Wang Z; Feng J; Yu J; Chen G
    J Cell Sci; 2019 May; 132(10):. PubMed ID: 31028177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic changes enhance necroptosis of type 2 diabetes mellitus mice infected with Mycobacterium tuberculosis.
    Vankayalapati A; Durojaye O; Mukherjee T; Paidipally P; Owusu-Afriyie B; Vankayalapati R; Radhakrishnan RK
    PLoS Pathog; 2024 May; 20(5):e1012148. PubMed ID: 38728367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury.
    Newton K; Dugger DL; Maltzman A; Greve JM; Hedehus M; Martin-McNulty B; Carano RA; Cao TC; van Bruggen N; Bernstein L; Lee WP; Wu X; DeVoss J; Zhang J; Jeet S; Peng I; McKenzie BS; Roose-Girma M; Caplazi P; Diehl L; Webster JD; Vucic D
    Cell Death Differ; 2016 Sep; 23(9):1565-76. PubMed ID: 27177019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 24(S)-Hydroxycholesterol induces RIPK1-dependent but MLKL-independent cell death in the absence of caspase-8.
    Vo DK; Urano Y; Takabe W; Saito Y; Noguchi N
    Steroids; 2015 Jul; 99(Pt B):230-7. PubMed ID: 25697054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RIPK1-RIPK3-MLKL-Associated Necroptosis Drives
    Barbosa LA; Fiuza PP; Borges LJ; Rolim FA; Andrade MB; Luz NF; Quintela-Carvalho G; Lima JB; Almeida RP; Chan FK; Bozza MT; Borges VM; Prates DB
    Front Immunol; 2018; 9():1818. PubMed ID: 30154785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The neurotoxicant PCB-95 by increasing the neuronal transcriptional repressor REST down-regulates caspase-8 and increases Ripk1, Ripk3 and MLKL expression determining necroptotic neuronal death.
    Guida N; Laudati G; Serani A; Mascolo L; Molinaro P; Montuori P; Di Renzo G; Canzoniero LMT; Formisano L
    Biochem Pharmacol; 2017 Oct; 142():229-241. PubMed ID: 28676433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis.
    Mulay SR; Desai J; Kumar SV; Eberhard JN; Thomasova D; Romoli S; Grigorescu M; Kulkarni OP; Popper B; Vielhauer V; Zuchtriegel G; Reichel C; Bräsen JH; Romagnani P; Bilyy R; Munoz LE; Herrmann M; Liapis H; Krautwald S; Linkermann A; Anders HJ
    Nat Commun; 2016 Jan; 7():10274. PubMed ID: 26817517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High glucose-induced apoptosis and necroptosis in podocytes is regulated by UCHL1 via RIPK1/RIPK3 pathway.
    Xu Y; Gao H; Hu Y; Fang Y; Qi C; Huang J; Cai X; Wu H; Ding X; Zhang Z
    Exp Cell Res; 2019 Sep; 382(2):111463. PubMed ID: 31247189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. K45A mutation of RIPK1 results in poor necroptosis and cytokine signaling in macrophages, which impacts inflammatory responses in vivo.
    Shutinoski B; Alturki NA; Rijal D; Bertin J; Gough PJ; Schlossmacher MG; Sad S
    Cell Death Differ; 2016 Oct; 23(10):1628-37. PubMed ID: 27258786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is Receptor-Interacting Protein Kinase 3 a Viable Therapeutic Target for
    Stutz MD; Ojaimi S; Ebert G; Pellegrini M
    Front Immunol; 2018; 9():1178. PubMed ID: 29892302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.