These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 29996427)
1. The hotspots of life cycle assessment for bioenergy: A review by social network analysis. Li J; Wang Y; Yan B Sci Total Environ; 2018 Jun; 625():1301-1308. PubMed ID: 29996427 [TBL] [Abstract][Full Text] [Related]
2. Spatial and life cycle assessment of bioenergy-driven land-use changes in Ireland. Clarke R; Sosa A; Murphy F Sci Total Environ; 2019 May; 664():262-275. PubMed ID: 30743120 [TBL] [Abstract][Full Text] [Related]
3. Environmental balance of the UK biogas sector: An evaluation by consequential life cycle assessment. Styles D; Dominguez EM; Chadwick D Sci Total Environ; 2016 Aug; 560-561():241-53. PubMed ID: 27101461 [TBL] [Abstract][Full Text] [Related]
4. Life cycle environmental impacts of biogas production and utilisation substituting for grid electricity, natural gas grid and transport fuels. Natividad Pérez-Camacho M; Curry R; Cromie T Waste Manag; 2019 Jul; 95():90-101. PubMed ID: 31351658 [TBL] [Abstract][Full Text] [Related]
5. Life cycle assessment of first-generation biofuels using a nitrogen crop model. Gallejones P; Pardo G; Aizpurua A; del Prado A Sci Total Environ; 2015 Feb; 505():1191-201. PubMed ID: 25461117 [TBL] [Abstract][Full Text] [Related]
6. Emerging role of Geographical Information System (GIS), Life Cycle Assessment (LCA) and spatial LCA (GIS-LCA) in sustainable bioenergy planning. Hiloidhari M; Baruah DC; Singh A; Kataki S; Medhi K; Kumari S; Ramachandra TV; Jenkins BM; Thakur IS Bioresour Technol; 2017 Oct; 242():218-226. PubMed ID: 28343863 [TBL] [Abstract][Full Text] [Related]
7. Life cycle assessment of bioenergy systems: state of the art and future challenges. Cherubini F; Strømman AH Bioresour Technol; 2011 Jan; 102(2):437-51. PubMed ID: 20832298 [TBL] [Abstract][Full Text] [Related]
8. Challenge clusters facing LCA in environmental decision-making-what we can learn from biofuels. McManus MC; Taylor CM; Mohr A; Whittaker C; Scown CD; Borrion AL; Glithero NJ; Yin Y Int J Life Cycle Assess; 2015; 20():1399-1414. PubMed ID: 27453635 [TBL] [Abstract][Full Text] [Related]
9. Total environmental impacts of biofuels from corn stover using a hybrid life cycle assessment model combining process life cycle assessment and economic input-output life cycle assessment. Liu C; Huang Y; Wang X; Tai Y; Liu L; Liu H Integr Environ Assess Manag; 2018 Jan; 14(1):139-149. PubMed ID: 28796442 [TBL] [Abstract][Full Text] [Related]
10. Anaerobic digestion of different feedstocks: impact on energetic and environmental balances of biogas process. Bacenetti J; Negri M; Fiala M; González-García S Sci Total Environ; 2013 Oct; 463-464():541-51. PubMed ID: 23831800 [TBL] [Abstract][Full Text] [Related]
11. Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels. McKechnie J; Colombo S; Chen J; Mabee W; MacLean HL Environ Sci Technol; 2011 Jan; 45(2):789-95. PubMed ID: 21142063 [TBL] [Abstract][Full Text] [Related]
12. A comparative environmental life cycle assessment of rice straw-based bioenergy projects in China. Alengebawy A; Mohamed BA; Ran Y; Yang Y; Pezzuolo A; Samer M; Ai P Environ Res; 2022 Sep; 212(Pt D):113404. PubMed ID: 35568236 [TBL] [Abstract][Full Text] [Related]
13. The potential of bio-methane as bio-fuel/bio-energy for reducing greenhouse gas emissions: a qualitative assessment for Europe in a life cycle perspective. Tilche A; Galatola M Water Sci Technol; 2008; 57(11):1683-92. PubMed ID: 18547917 [TBL] [Abstract][Full Text] [Related]
14. Life cycle GHG emissions from microalgal biodiesel--a CA-GREET model. Woertz IC; Benemann JR; Du N; Unnasch S; Mendola D; Mitchell BG; Lundquist TJ Environ Sci Technol; 2014 Jun; 48(11):6060-8. PubMed ID: 24779347 [TBL] [Abstract][Full Text] [Related]
15. Anaerobic digestion of agricultural and other substrates--implications for greenhouse gas emissions. Pucker J; Jungmeier G; Siegl S; Pötsch EM Animal; 2013 Jun; 7 Suppl 2():283-91. PubMed ID: 23739470 [TBL] [Abstract][Full Text] [Related]
16. Biochemical production of bioenergy from agricultural crops and residue in Iran. Karimi Alavijeh M; Yaghmaei S Waste Manag; 2016 Jun; 52():375-94. PubMed ID: 27012716 [TBL] [Abstract][Full Text] [Related]
17. Assessing the greenhouse gas emissions of Brazilian soybean biodiesel production. Cerri CEP; You X; Cherubin MR; Moreira CS; Raucci GS; Castigioni BA; Alves PA; Cerri DGP; Mello FFC; Cerri CC PLoS One; 2017; 12(5):e0176948. PubMed ID: 28493965 [TBL] [Abstract][Full Text] [Related]
18. Bioenergy production from perennial energy crops: a consequential LCA of 12 bioenergy scenarios including land use changes. Tonini D; Hamelin L; Wenzel H; Astrup T Environ Sci Technol; 2012 Dec; 46(24):13521-30. PubMed ID: 23126612 [TBL] [Abstract][Full Text] [Related]
19. Comparison of algae cultivation methods for bioenergy production using a combined life cycle assessment and life cycle costing approach. Resurreccion EP; Colosi LM; White MA; Clarens AF Bioresour Technol; 2012 Dec; 126():298-306. PubMed ID: 23117186 [TBL] [Abstract][Full Text] [Related]
20. Broadening GHG accounting with LCA: application to a waste management business unit. Fallaha S; Martineau G; Bécaert V; Margni M; Deschênes L; Samson R; Aoustin E Waste Manag Res; 2009 Nov; 27(9):885-93. PubMed ID: 19854813 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]