These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 29996467)

  • 1. Comparison of Machine Learning Models for Hazardous Gas Dispersion Prediction in Field Cases.
    Wang R; Chen B; Qiu S; Zhu Z; Wang Y; Wang Y; Qiu X
    Int J Environ Res Public Health; 2018 Jul; 15(7):. PubMed ID: 29996467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data-Driven Hazardous Gas Dispersion Modeling Using the Integration of Particle Filtering and Error Propagation Detection.
    Zhu Z; Qiu S; Chen B; Wang R; Qiu X
    Int J Environ Res Public Health; 2018 Aug; 15(8):. PubMed ID: 30072651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contaminant dispersion prediction and source estimation with integrated Gaussian-machine learning network model for point source emission in atmosphere.
    Ma D; Zhang Z
    J Hazard Mater; 2016 Jul; 311():237-45. PubMed ID: 27035273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Prediction of the Toxic Gas Diffusion Rule in a Real Environment Based on LSTM.
    Qian F; Chen L; Li J; Ding C; Chen X; Wang J
    Int J Environ Res Public Health; 2019 Jun; 16(12):. PubMed ID: 31212880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving autocoding performance of rare categories in injury classification: Is more training data or filtering the solution?
    Nanda G; Vallmuur K; Lehto M
    Accid Anal Prev; 2018 Jan; 110():115-127. PubMed ID: 29127808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of turbulence models in heavy gas dispersion over obstacles.
    Sklavounos S; Rigas F
    J Hazard Mater; 2004 Apr; 108(1-2):9-20. PubMed ID: 15081160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling mercury speciation in combustion flue gases using support vector machine: prediction and evaluation.
    Zhao B; Zhang Z; Jin J; Pan WP
    J Hazard Mater; 2010 Feb; 174(1-3):244-50. PubMed ID: 19786321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fetal health status prediction based on maternal clinical history using machine learning techniques.
    Akbulut A; Ertugrul E; Topcu V
    Comput Methods Programs Biomed; 2018 Sep; 163():87-100. PubMed ID: 30119860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research on air pollutant concentration prediction method based on self-adaptive neuro-fuzzy weighted extreme learning machine.
    Li Y; Jiang P; She Q; Lin G
    Environ Pollut; 2018 Oct; 241():1115-1127. PubMed ID: 30029320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of feature selection and regression models for chlorophyll-a prediction in a shallow lake.
    Li X; Sha J; Wang ZL
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):19488-19498. PubMed ID: 29730758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The real-time estimation of hazardous gas dispersion by the integration of gas detectors, neural network and gas dispersion models.
    Wang B; Chen B; Zhao J
    J Hazard Mater; 2015 Dec; 300():433-442. PubMed ID: 26223017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting blood pressure from physiological index data using the SVR algorithm.
    Zhang B; Ren H; Huang G; Cheng Y; Hu C
    BMC Bioinformatics; 2019 Feb; 20(1):109. PubMed ID: 30819090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maximizing lipocalin prediction through balanced and diversified training set and decision fusion.
    Nath A; Subbiah K
    Comput Biol Chem; 2015 Dec; 59 Pt A():101-10. PubMed ID: 26433483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hazardous gas releases in urban areas: assessment of consequences through CFD modelling.
    Pontiggia M; Derudi M; Alba M; Scaioni M; Rota R
    J Hazard Mater; 2010 Apr; 176(1-3):589-96. PubMed ID: 20006427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Hybrid Short-Term Traffic Flow Prediction Model Based on Singular Spectrum Analysis and Kernel Extreme Learning Machine.
    Shang Q; Lin C; Yang Z; Bing Q; Zhou X
    PLoS One; 2016; 11(8):e0161259. PubMed ID: 27551829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of skin sensitization potency using machine learning approaches.
    Zang Q; Paris M; Lehmann DM; Bell S; Kleinstreuer N; Allen D; Matheson J; Jacobs A; Casey W; Strickland J
    J Appl Toxicol; 2017 Jul; 37(7):792-805. PubMed ID: 28074598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A general procedure to generate models for urban environmental-noise pollution using feature selection and machine learning methods.
    Torija AJ; Ruiz DP
    Sci Total Environ; 2015 Feb; 505():680-93. PubMed ID: 25461071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of vulnerable zones due to accidental release of toxic materials resulting in dense gas clouds.
    Singh MP; Mohan M; Panwar TS; Chopra HV
    Risk Anal; 1991 Sep; 11(3):425-40. PubMed ID: 1947349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Prediction of methane emission of paddy field based on the support vector regression model].
    Chen Q; Jiang WG; Chen X; Yuan LH; Wang WJ; Pan YZ; Wang W; Liu XF; Liu HJ
    Huan Jing Ke Xue; 2013 Aug; 34(8):2975-82. PubMed ID: 24191538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction model and application of machine learning for supersaturated total dissolved gas generation in high dam discharge.
    Wang Z; Feng J; Liang M; Wu Z; Li R; Chen Z; Liang R
    Water Res; 2022 Jul; 220():118682. PubMed ID: 35661511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.