These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 29996553)

  • 1. Wideband Spectrum Sensing Based on Single-Channel Sub-Nyquist Sampling for Cognitive Radio.
    Liu C; Wang H; Zhang J; He Z
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29996553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a Single Channel Modulated Wideband Converter for Wideband Spectrum Sensing: Theory, Architecture and Hardware Implementation.
    Liu W; Huang Z; Wang X; Sun W
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28471410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low Energy Consumption Compressed Spectrum Sensing Based on Channel Energy Reconstruction in Cognitive Radio Network.
    Fang Y; Li L; Li Y; Peng H; Yang Y
    Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32110913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. WINDOW: wideband demodulator for optical waveforms.
    Lev O; Wiener T; Cohen D; Eldar YC
    Opt Express; 2017 Aug; 25(16):19444-19456. PubMed ID: 29041138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband Cooperative Spectrum Sensing Based on Distributed Modulated Wideband Converter.
    Xu Z; Li Z; Li J
    Sensors (Basel); 2016 Sep; 16(10):. PubMed ID: 27690034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Self-Adaptive Progressive Support Selection Scheme for Collaborative Wideband Spectrum Sensing.
    Hu Z; Bai Y; Huang M; Xie M; Zhao Y
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30205579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Low Complexity Sensing Algorithm for Non-Sparse Wideband Spectrum.
    Ren S; Chen W; Wu H; Li D; Hu Z
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36016056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wideband Spectrum Sensing Using Modulated Wideband Converter and Data Reduction Invariant Algorithms.
    Burel G; Radoi E; Gautier R; Le Jeune D
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadening frequency response of a distributed sparse-wideband vibration sensing via a time-division multi-frequency sub-Nyquist sampling.
    Qu S; Qin Z; Liu Z; Xu Y; Cong Z; Wang S; Li Z; Wang H
    Opt Express; 2020 May; 28(10):14237-14245. PubMed ID: 32403466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-Interleaved SAR ADC with Background Timing-Skew Calibration for UWB Wireless Communication in IoT Systems.
    Seong K; Jung DK; Yoon DH; Han JS; Kim JE; Kim TT; Lee W; Baek KH
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32344711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wideband Spectrum Sensing: A Bayesian Compressive Sensing Approach.
    Arjoune Y; Kaabouch N
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29874876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Policy for Optimizing Sub-Band Selection Sequences in Wideband Spectrum Sensing.
    Chen Y; Su S; Wei J
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31546666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectrum Sensing Using Co-Prime Array Based Modulated Wideband Converter.
    Lv W; Wang H; Mu S
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28481264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compressed sensing based sub-Nyquist sampling of multiple sinusoids with dual rate channels.
    Dai Z; Chen Y; Wen W; Zheng Y
    Rev Sci Instrum; 2018 Dec; 89(12):125113. PubMed ID: 30599542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wideband Spectrum Sensing Based on Riemannian Distance for Cognitive Radio Networks.
    Lu Q; Yang S; Liu F
    Sensors (Basel); 2017 Mar; 17(4):. PubMed ID: 28333119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GHz sampling hardware implementation with sub-Nyquist coprime sampling rates.
    Wen W; Yan H; Zhao Y; Liu D; He H
    Rev Sci Instrum; 2019 Jul; 90(7):074706. PubMed ID: 31370498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compressive sensing based maximum-minimum subband energy detection for cognitive radios.
    Dagne DT; Fante KA; Desta GA
    Heliyon; 2020 Sep; 6(9):e04906. PubMed ID: 32995610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distributed fiber sparse-wideband vibration sensing by sub-Nyquist additive random sampling.
    Zhang J; Zheng H; Zhu T; Yin G; Liu M; Bai Y; Qu D; Qiu F; Huang X
    Opt Lett; 2018 May; 43(9):2022-2025. PubMed ID: 29714736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sparse Recovery Optimization in Wireless Sensor Networks with a Sub-Nyquist Sampling Rate.
    Brunelli D; Caione C
    Sensors (Basel); 2015 Jul; 15(7):16654-73. PubMed ID: 26184203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The RIP and block-RIP analysis of Nyquist folding receiver for recovering signals.
    Jiang K; Chen S; Tang B
    EURASIP J Adv Signal Process; 2016; 2016(1):92. PubMed ID: 27642294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.