BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 29996654)

  • 1. Determining the Structural and Energetic Basis of Allostery in a De Novo Designed Metalloprotein Assembly.
    Churchfield LA; Alberstein RG; Williamson LM; Tezcan FA
    J Am Chem Soc; 2018 Aug; 140(31):10043-10053. PubMed ID: 29996654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De Novo Design of an Allosteric Metalloprotein Assembly with Strained Disulfide Bonds.
    Churchfield LA; Medina-Morales A; Brodin JD; Perez A; Tezcan FA
    J Am Chem Soc; 2016 Oct; 138(40):13163-13166. PubMed ID: 27649076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Construction of Functional Supramolecular Metalloprotein Assemblies.
    Churchfield LA; Tezcan FA
    Acc Chem Res; 2019 Feb; 52(2):345-355. PubMed ID: 30698941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro and cellular self-assembly of a Zn-binding protein cryptand via templated disulfide bonds.
    Medina-Morales A; Perez A; Brodin JD; Tezcan FA
    J Am Chem Soc; 2013 Aug; 135(32):12013-22. PubMed ID: 23905754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites.
    Petros AK; Reddi AR; Kennedy ML; Hyslop AG; Gibney BR
    Inorg Chem; 2006 Dec; 45(25):9941-58. PubMed ID: 17140191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-Directed Design of Supramolecular Protein Assemblies.
    Bailey JB; Subramanian RH; Churchfield LA; Tezcan FA
    Methods Enzymol; 2016; 580():223-50. PubMed ID: 27586336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studying allosteric regulation in metal sensor proteins using computational methods.
    Chakravorty DK; Merz KM
    Adv Protein Chem Struct Biol; 2014; 96():181-218. PubMed ID: 25443958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural chemistry of a green fluorescent protein Zn biosensor.
    Barondeau DP; Kassmann CJ; Tainer JA; Getzoff ED
    J Am Chem Soc; 2002 Apr; 124(14):3522-4. PubMed ID: 11929238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-mediated self-assembly of protein superstructures: influence of secondary interactions on protein oligomerization and aggregation.
    Salgado EN; Lewis RA; Faraone-Mennella J; Tezcan FA
    J Am Chem Soc; 2008 May; 130(19):6082-4. PubMed ID: 18422313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of Scaffold Flexibility/Rigidity in the Design and Directed Evolution of Artificial Metallo-β-lactamases.
    Song WJ; Yu J; Tezcan FA
    J Am Chem Soc; 2017 Nov; 139(46):16772-16779. PubMed ID: 28992705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of metal selectivity in templated protein interfaces.
    Brodin JD; Medina-Morales A; Ni T; Salgado EN; Ambroggio XI; Tezcan FA
    J Am Chem Soc; 2010 Jun; 132(25):8610-7. PubMed ID: 20515031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing hydrolytic zinc metalloenzymes.
    Zastrow ML; Pecoraro VL
    Biochemistry; 2014 Feb; 53(6):957-78. PubMed ID: 24506795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lewis acid properties of zinc(II) in Its cyclen complex. The structure of [Zn(cyclen)(S=C(NH2)2](ClO4)2 and the bonding of thiourea to metal ions. Some implications for zinc metalloenzymes.
    Salter MH; Reibenspies JH; Jones SB; Hancock RD
    Inorg Chem; 2005 Apr; 44(8):2791-7. PubMed ID: 15819567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Post-translational control of protein function by disulfide bond cleavage.
    Cook KM; Hogg PJ
    Antioxid Redox Signal; 2013 May; 18(15):1987-2015. PubMed ID: 23198756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interdependence of free zinc changes and protein complex assembly - insights into zinc signal regulation.
    Kocyła A; Adamczyk J; Krężel A
    Metallomics; 2018 Jan; 10(1):120-131. PubMed ID: 29240217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of protons in the thermodynamic contribution of a Zn(II)-Cys4 site toward metalloprotein stability.
    Reddi AR; Gibney BR
    Biochemistry; 2007 Mar; 46(12):3745-58. PubMed ID: 17326664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrolytic catalysis and structural stabilization in a designed metalloprotein.
    Zastrow ML; Peacock AF; Stuckey JA; Pecoraro VL
    Nat Chem; 2011 Nov; 4(2):118-23. PubMed ID: 22270627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the configurational space of a metalloprotein core: an ab initio molecular dynamics study of Duo Ferro 1 binuclear Zn cofactor.
    Papoian GA; DeGrado WF; Klein ML
    J Am Chem Soc; 2003 Jan; 125(2):560-9. PubMed ID: 12517172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Allosteric disulfide bonds.
    Schmidt B; Ho L; Hogg PJ
    Biochemistry; 2006 Jun; 45(24):7429-33. PubMed ID: 16768438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical and Functional Evaluation of the Intramolecular Disulfide Bonds in the Zinc-Chelating Antimicrobial Protein Human S100A7 (Psoriasin).
    Cunden LS; Brophy MB; Rodriguez GE; Flaxman HA; Nolan EM
    Biochemistry; 2017 Oct; 56(43):5726-5738. PubMed ID: 28976190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.