These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 29996655)

  • 1. Influence of Salinity on the Mechanism of Surface Icing: Implication to the Disappearing Freezing Singularity.
    Singha SK; Das PK; Maiti B
    Langmuir; 2018 Jul; 34(30):9064-9071. PubMed ID: 29996655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Saltwater icephobicity: Influence of surface chemistry on saltwater icing.
    Carpenter K; Bahadur V
    Sci Rep; 2015 Dec; 5():17563. PubMed ID: 26626958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A water activity based model of heterogeneous ice nucleation kinetics for freezing of water and aqueous solution droplets.
    Knopf DA; Alpert PA
    Faraday Discuss; 2013; 165():513-34. PubMed ID: 24601020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.
    Knopf DA; Rigg YJ
    J Phys Chem A; 2011 Feb; 115(5):762-73. PubMed ID: 21235213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interfacial ice sprouting during salty water droplet freezing.
    Chu F; Li S; Zhao C; Feng Y; Lin Y; Wu X; Yan X; Miljkovic N
    Nat Commun; 2024 Mar; 15(1):2249. PubMed ID: 38480695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-icing properties of a superhydrophobic surface in a salt environment: an unexpected increase in freezing delay times for weak brine droplets.
    Boinovich LB; Emelyanenko AM; Emelyanenko KA; Maslakov KI
    Phys Chem Chem Phys; 2016 Jan; 18(4):3131-6. PubMed ID: 26743911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are superhydrophobic surfaces best for icephobicity?
    Jung S; Dorrestijn M; Raps D; Das A; Megaridis CM; Poulikakos D
    Langmuir; 2011 Mar; 27(6):3059-66. PubMed ID: 21319778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of wettability on sessile drop freezing: when superhydrophobicity stimulates an extreme freezing delay.
    Boinovich L; Emelyanenko AM; Korolev VV; Pashinin AS
    Langmuir; 2014 Feb; 30(6):1659-68. PubMed ID: 24491217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cascade Freezing of Supercooled Water Droplet Collectives.
    Graeber G; Dolder V; Schutzius TM; Poulikakos D
    ACS Nano; 2018 Nov; 12(11):11274-11281. PubMed ID: 30354059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TinyLev acoustically levitated water: Direct observation of collective, inter-droplet effects through morphological and thermal analysis of multiple droplets.
    McElligott A; Guerra A; Wood MJ; Rey AD; Kietzig AM; Servio P
    J Colloid Interface Sci; 2022 Aug; 619():84-95. PubMed ID: 35378478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Freezing of water and aqueous NaCl droplets coated by organic monolayers as a function of surfactant properties and water activity.
    Knopf DA; Forrester SM
    J Phys Chem A; 2011 Jun; 115(22):5579-91. PubMed ID: 21568271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Latent Heat Released by Freezing Droplets during Frost Wave Propagation.
    Chavan S; Park D; Singla N; Sokalski P; Boyina K; Miljkovic N
    Langmuir; 2018 Jun; 34(22):6636-6644. PubMed ID: 29733606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of a new method for the instant preparation of ice particles in ice abrasive air jet.
    Li Z; Zhu Y; Liu Y; Cao C; Wu J; Huang F
    Sci Rep; 2022 Oct; 12(1):17497. PubMed ID: 36261461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism by which fish antifreeze proteins cause thermal hysteresis.
    Kristiansen E; Zachariassen KE
    Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rate of Homogenous Nucleation of Ice in Supercooled Water.
    Atkinson JD; Murray BJ; O'Sullivan D
    J Phys Chem A; 2016 Aug; 120(33):6513-20. PubMed ID: 27410458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Universality of tip singularity formation in freezing water drops.
    Marín AG; Enríquez OR; Brunet P; Colinet P; Snoeijer JH
    Phys Rev Lett; 2014 Aug; 113(5):054301. PubMed ID: 25126922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How different freezing morphologies of impacting droplets form.
    Fang WZ; Zhu F; Tao WQ; Yang C
    J Colloid Interface Sci; 2021 Feb; 584():403-410. PubMed ID: 33091865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistically understanding the roles of nanostructure features in interfacial ice nucleation for enhancing icing delay performance.
    Shen Y; Xie X; Xie Y; Tao J; Jiang J; Chen H; Lu Y; Xu Y
    Phys Chem Chem Phys; 2019 Sep; 21(36):19785-19794. PubMed ID: 31478533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Aluminum Substrate Surface Modification on Wettability and Freezing Delay of Water Droplet at Subzero Temperatures.
    Rahimi M; Afshari A; Thormann E
    ACS Appl Mater Interfaces; 2016 May; 8(17):11147-53. PubMed ID: 27045573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frost halos from supercooled water droplets.
    Jung S; Tiwari MK; Poulikakos D
    Proc Natl Acad Sci U S A; 2012 Oct; 109(40):16073-8. PubMed ID: 23012410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.