These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 29996704)

  • 1. Co-exposure to silver nanoparticles and cadmium induce metabolic adaptation in HepG2 cells.
    Miranda RR; Gorshkov V; Korzeniowska B; Kempf SJ; Neto FF; Kjeldsen F
    Nanotoxicology; 2018 Sep; 12(7):781-795. PubMed ID: 29996704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicological interactions of silver nanoparticles and non-essential metals in human hepatocarcinoma cell line.
    Miranda RR; Bezerra AG; Oliveira Ribeiro CA; Randi MA; Voigt CL; Skytte L; Rasmussen KL; Kjeldsen F; Filipak Neto F
    Toxicol In Vitro; 2017 Apr; 40():134-143. PubMed ID: 28063819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses of human hepatoma HepG2 cells to silver nanoparticles and polycyclic aromatic hydrocarbons.
    Filipak Neto F; Cardoso da Silva L; Liebel S; Voigt CL; Oliveira Ribeiro CA
    Toxicol Mech Methods; 2018 Jan; 28(1):69-78. PubMed ID: 28721743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicological effects of silver nanoparticles and cadmium chloride in macrophage cell line (RAW 264.7): An in vitro approach.
    Glinski A; Lima de Souza T; Zablocki da Luz J; Bezerra Junior AG; Camargo de Oliveira C; de Oliveira Ribeiro CA; Filipak Neto F
    J Trace Elem Med Biol; 2021 Dec; 68():126854. PubMed ID: 34488184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytotoxicity of subtoxic AgNP in human hepatoma cell line (HepG2) after long-term exposure.
    Nowrouzi A; Meghrazi K; Golmohammadi T; Golestani A; Ahmadian S; Shafiezadeh M; Shajary Z; Khaghani S; Amiri AN
    Iran Biomed J; 2010; 14(1-2):23-32. PubMed ID: 20683495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research on the hepatotoxicity mechanism of citrate-modified silver nanoparticles based on metabolomics and proteomics.
    Xie J; Dong W; Liu R; Wang Y; Li Y
    Nanotoxicology; 2018 Feb; 12(1):18-31. PubMed ID: 29251223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Docosahexaenoic acid and L-Carnitine prevent ATP loss in SH-SY5Y neuroblastoma cells after exposure to silver nanoparticles.
    Tan JW; Ho CF; Ng YK; Ong WY
    Environ Toxicol; 2016 Feb; 31(2):224-32. PubMed ID: 25146533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteome-wide analysis reveals molecular pathways affected by AgNP in a ROS-dependent manner.
    Miranda RR; Oliveira ACS; Skytte L; Rasmussen KL; Kjeldsen F
    Nanotoxicology; 2022 Feb; 16(1):73-87. PubMed ID: 35138974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptomic and proteomic responses of silver nanoparticles in hepatocyte-like cells derived from human induced pluripotent stem cells.
    Gao X; Li R; Yourick JJ; Sprando RL
    Toxicol In Vitro; 2022 Mar; 79():105274. PubMed ID: 34798274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of surface functionalization on the uptake mechanism and toxicity effects of silver nanoparticles in HepG2 cells.
    Brkić Ahmed L; Milić M; Pongrac IM; Marjanović AM; Mlinarić H; Pavičić I; Gajović S; Vinković Vrček I
    Food Chem Toxicol; 2017 Sep; 107(Pt A):349-361. PubMed ID: 28694083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upregulation of metallothioneins after exposure of cultured primary astrocytes to silver nanoparticles.
    Luther EM; Schmidt MM; Diendorf J; Epple M; Dringen R
    Neurochem Res; 2012 Aug; 37(8):1639-48. PubMed ID: 22476984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of media composition on bioavailability and toxicity of silver and silver nanoparticles in fish intestinal cells (RTgutGC).
    Minghetti M; Schirmer K
    Nanotoxicology; 2016 Dec; 10(10):1526-1534. PubMed ID: 27689691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SILAC-based quantitative proteomics identifies size-dependent molecular mechanisms involved in silver nanoparticles-induced toxicity.
    Fernández MN; Muñoz-Olivas R; Luque-Garcia JL
    Nanotoxicology; 2019 Aug; 13(6):812-826. PubMed ID: 30776931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NOX4- and Nrf2-mediated oxidative stress induced by silver nanoparticles in vascular endothelial cells.
    Sun X; Yang Y; Shi J; Wang C; Yu Z; Zhang H
    J Appl Toxicol; 2017 Dec; 37(12):1428-1437. PubMed ID: 28815642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity of silver nanoparticles to a fish gill cell line: role of medium composition.
    Yue Y; Behra R; Sigg L; Fernández Freire P; Pillai S; Schirmer K
    Nanotoxicology; 2015 Feb; 9(1):54-63. PubMed ID: 24621324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicity of nanosilver and fumonisin B
    Radić S; Domijan AM; Glavaš Ljubimir K; Maldini K; Ivešić M; Peharec Štefanić P; Krivohlavek A
    Chemosphere; 2019 Aug; 229():86-93. PubMed ID: 31078035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of in vitro toxicity of silver ions and silver nanoparticles on human hepatoma cells.
    Vrček IV; Žuntar I; Petlevski R; Pavičić I; Dutour Sikirić M; Ćurlin M; Goessler W
    Environ Toxicol; 2016 Jun; 31(6):679-92. PubMed ID: 25448069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicogenomic responses of human liver HepG2 cells to silver nanoparticles.
    Sahu SC; Zheng J; Yourick JJ; Sprando RL; Gao X
    J Appl Toxicol; 2015 Oct; 35(10):1160-8. PubMed ID: 26014281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity of silver nanoparticles in mouse bone marrow-derived dendritic cells: Implications for phenotype.
    Castro-Gamboa S; Garcia-Garcia MR; Piñon-Zarate G; Rojas-Lemus M; Jarquin-Yañez K; Angel Herrera-Enriquez M; Fortoul TI; Toledano-Magaña Y; Garcia-Iglesias T; Pestryakov A; Eliu Castell-Rodriguez A; Bogdanchikova N
    J Immunotoxicol; 2019 Dec; 16(1):54-62. PubMed ID: 30938211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomics study of silver nanoparticles on Caco-2 cells.
    Gioria S; Urbán P; Hajduch M; Barboro P; Cabaleiro N; La Spina R; Chassaigne H
    Toxicol In Vitro; 2018 Aug; 50():347-372. PubMed ID: 29626626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.