These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

453 related articles for article (PubMed ID: 29996889)

  • 1. Identification of Aedes aegypti cis-regulatory elements that promote gene expression in olfactory receptor neurons of distantly related dipteran insects.
    Mysore K; Li P; Duman-Scheel M
    Parasit Vectors; 2018 Jul; 11(1):406. PubMed ID: 29996889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput cis-regulatory element discovery in the vector mosquito Aedes aegypti.
    Behura SK; Sarro J; Li P; Mysore K; Severson DW; Emrich SJ; Duman-Scheel M
    BMC Genomics; 2016 May; 17():341. PubMed ID: 27161480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chitosan/siRNA nanoparticle targeting demonstrates a requirement for single-minded during larval and pupal olfactory system development of the vector mosquito Aedes aegypti.
    Mysore K; Andrews E; Li P; Duman-Scheel M
    BMC Dev Biol; 2014 Feb; 14():9. PubMed ID: 24552425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic organization and splicing evolution of the doublesex gene, a Drosophila regulator of sexual differentiation, in the dengue and yellow fever mosquito Aedes aegypti.
    Salvemini M; Mauro U; Lombardo F; Milano A; Zazzaro V; Arcà B; Polito LC; Saccone G
    BMC Evol Biol; 2011 Feb; 11():41. PubMed ID: 21310052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redeployment of a conserved gene regulatory network during Aedes aegypti development.
    Suryamohan K; Hanson C; Andrews E; Sinha S; Scheel MD; Halfon MS
    Dev Biol; 2016 Aug; 416(2):402-13. PubMed ID: 27341759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal Responses of Antennal Olfactory Sensilla to Insect Chemical Repellents in the Yellow Fever Mosquito, Aedes aegypti.
    Chen Z; Liu F; Liu N
    J Chem Ecol; 2018 Dec; 44(12):1120-1126. PubMed ID: 30291492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The orthologue of the fruitfly sex behaviour gene fruitless in the mosquito Aedes aegypti: evolution of genomic organisation and alternative splicing.
    Salvemini M; D'Amato R; Petrella V; Aceto S; Nimmo D; Neira M; Alphey L; Polito LC; Saccone G
    PLoS One; 2013; 8(2):e48554. PubMed ID: 23418412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary analysis of the kinesin light chain genes in the yellow fever mosquito Aedes aegypti: gene duplication as a source for novel early zygotic genes.
    Biedler JK; Tu Z
    BMC Evol Biol; 2010 Jul; 10():206. PubMed ID: 20615250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of germline transcriptional regulatory elements in Aedes aegypti.
    Akbari OS; Papathanos PA; Sandler JE; Kennedy K; Hay BA
    Sci Rep; 2014 Feb; 4():3954. PubMed ID: 24492376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a chemosensory receptor from the yellow fever mosquito, Aedes aegypti, that is highly conserved and expressed in olfactory and gustatory organs.
    Melo AC; Rützler M; Pitts RJ; Zwiebel LJ
    Chem Senses; 2004 Jun; 29(5):403-10. PubMed ID: 15201207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural odor ligands for olfactory receptor neurons of the female mosquito Aedes aegypti: use of gas chromatography-linked single sensillum recordings.
    Ghaninia M; Larsson M; Hansson BS; Ignell R
    J Exp Biol; 2008 Sep; 211(Pt 18):3020-7. PubMed ID: 18775939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional analysis of the promoter of an early zygotic gene KLC2 in Aedes aegypti.
    Hu W; Tu ZJ
    Parasit Vectors; 2018 Dec; 11(Suppl 2):655. PubMed ID: 30583735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PeakMatcher facilitates updated Aedes aegypti embryonic cis-regulatory element map.
    Nowling RJ; Behura SK; Halfon MS; Emrich SJ; Duman-Scheel M
    Hereditas; 2021 Jan; 158(1):7. PubMed ID: 33509290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of Aedes aegypti olfactory system development through chitosan/siRNA nanoparticle targeting of semaphorin-1a.
    Mysore K; Flannery EM; Tomchaney M; Severson DW; Duman-Scheel M
    PLoS Negl Trop Dis; 2013; 7(5):e2215. PubMed ID: 23696908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A DREaMR system to simplify combining mutations with rescue transgenes in Aedes aegypti.
    Chen J; Luo J; Gurav AS; Chen Z; Wang Y; Montell C
    Genetics; 2021 Nov; 219(3):. PubMed ID: 34740249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) to Identify Functional Regulatory DNA in Insect Genomes.
    McKay DJ
    Methods Mol Biol; 2019; 1858():89-97. PubMed ID: 30414113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA-seq analyses of blood-induced changes in gene expression in the mosquito vector species, Aedes aegypti.
    Bonizzoni M; Dunn WA; Campbell CL; Olson KE; Dimon MT; Marinotti O; James AA
    BMC Genomics; 2011 Jan; 12():82. PubMed ID: 21276245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular diversity and gene expression profiles in the male and female brain of Aedes aegypti.
    Cui Y; Behura SK; Franz AWE
    BMC Genomics; 2022 Feb; 23(1):119. PubMed ID: 35144549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Odour Coding in the Yellow Fever Mosquito, Aedes aegypti.
    Chen Z; Liu F; Liu N
    Sci Rep; 2019 Sep; 9(1):13336. PubMed ID: 31527631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. siRNA-Mediated Silencing of doublesex during Female Development of the Dengue Vector Mosquito Aedes aegypti.
    Mysore K; Sun L; Tomchaney M; Sullivan G; Adams H; Piscoya AS; Severson DW; Syed Z; Duman-Scheel M
    PLoS Negl Trop Dis; 2015 Nov; 9(11):e0004213. PubMed ID: 26544686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.