These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 29997234)

  • 21. Monomethyl branched-chain fatty acids are critical for Caenorhabitis elegans survival in elevated glucose conditions.
    Vieira AFC; Xatse MA; Tifeki H; Diot C; Walhout AJM; Olsen CP
    J Biol Chem; 2022 Feb; 298(2):101444. PubMed ID: 34826420
    [TBL] [Abstract][Full Text] [Related]  

  • 22. C. Elegans Fatty Acid Two-Hydroxylase Regulates Intestinal Homeostasis by Affecting Heptadecenoic Acid Production.
    Li Y; Wang C; Huang Y; Fu R; Zheng H; Zhu Y; Shi X; Padakanti PK; Tu Z; Su X; Zhang H
    Cell Physiol Biochem; 2018; 49(3):947-960. PubMed ID: 30184537
    [TBL] [Abstract][Full Text] [Related]  

  • 23. trans-Trismethoxy resveratrol decreased fat accumulation dependent on fat-6 and fat-7 in Caenorhabditis elegans.
    Yue Y; Shen P; Chang AL; Qi W; Kim KH; Kim D; Park Y
    Food Funct; 2019 Aug; 10(8):4966-4974. PubMed ID: 31343008
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of fat storage and reproduction by Krüppel-like transcription factor KLF3 and fat-associated genes in Caenorhabditis elegans.
    Zhang J; Bakheet R; Parhar RS; Huang CH; Hussain MM; Pan X; Siddiqui SS; Hashmi S
    J Mol Biol; 2011 Aug; 411(3):537-53. PubMed ID: 21704635
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Turning up the heat on membrane fluidity.
    Fan W; Evans RM
    Cell; 2015 May; 161(5):962-963. PubMed ID: 26000475
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mutation in Caenorhabditis elegans Krüppel-like factor, KLF-3 results in fat accumulation and alters fatty acid composition.
    Zhang J; Yang C; Brey C; Rodriguez M; Oksov Y; Gaugler R; Dickstein E; Huang CH; Hashmi S
    Exp Cell Res; 2009 Sep; 315(15):2568-80. PubMed ID: 19427851
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation and functions of membrane lipids: Insights from
    Koyiloth M; Gummadi SN
    BBA Adv; 2022; 2():100043. PubMed ID: 37082601
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elongation and desaturation of fatty acids are critical in growth, lipid metabolism and ontogeny of Caenorhabditis elegans.
    Horikawa M; Nomura T; Hashimoto T; Sakamoto K
    J Biochem; 2008 Aug; 144(2):149-58. PubMed ID: 18424809
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -independent pathways in C. elegans.
    Taubert S; Van Gilst MR; Hansen M; Yamamoto KR
    Genes Dev; 2006 May; 20(9):1137-49. PubMed ID: 16651656
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fatty acid desaturation and the regulation of adiposity in Caenorhabditis elegans.
    Brock TJ; Browse J; Watts JL
    Genetics; 2007 Jun; 176(2):865-75. PubMed ID: 17435249
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new AMPK isoform mediates glucose-restriction induced longevity non-cell autonomously by promoting membrane fluidity.
    Jeong JH; Han JS; Jung Y; Lee SM; Park SH; Park M; Shin MG; Kim N; Kang MS; Kim S; Lee KP; Kwon KS; Kim CA; Yang YR; Hwang GS; Kwon ES
    Nat Commun; 2023 Jan; 14(1):288. PubMed ID: 36653384
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CHCA-1 is a copper-regulated CTR1 homolog required for normal development, copper accumulation, and copper-sensing behavior in
    Yuan S; Sharma AK; Richart A; Lee J; Kim BE
    J Biol Chem; 2018 Jul; 293(28):10911-10925. PubMed ID: 29784876
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Zinc mediates the SREBP-SCD axis to regulate lipid metabolism in
    Zhang JJ; Hao JJ; Zhang YR; Wang YL; Li MY; Miao HL; Zou XJ; Liang B
    J Lipid Res; 2017 Sep; 58(9):1845-1854. PubMed ID: 28710073
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acyl-CoA Dehydrogenase Drives Heat Adaptation by Sequestering Fatty Acids.
    Ma DK; Li Z; Lu AY; Sun F; Chen S; Rothe M; Menzel R; Sun F; Horvitz HR
    Cell; 2015 May; 161(5):1152-1163. PubMed ID: 25981666
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A genetic titration of membrane composition in Caenorhabditis elegans reveals its importance for multiple cellular and physiological traits.
    Devkota R; Kaper D; Bodhicharla R; Henricsson M; Borén J; Pilon M
    Genetics; 2021 Aug; 219(1):. PubMed ID: 34125894
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic regulation of unsaturated fatty acid composition in C. elegans.
    Brock TJ; Browse J; Watts JL
    PLoS Genet; 2006 Jul; 2(7):e108. PubMed ID: 16839188
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physiological roles of STIM1 and Orai1 homologs and CRAC channels in the genetic model organism Caenorhabditis elegans.
    Strange K; Yan X; Lorin-Nebel C; Xing J
    Cell Calcium; 2007 Aug; 42(2):193-203. PubMed ID: 17376526
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential adiponectin signalling couples ER stress with lipid metabolism to modulate ageing in C. elegans.
    Kyriakakis E; Charmpilas N; Tavernarakis N
    Sci Rep; 2017 Jul; 7(1):5115. PubMed ID: 28698593
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A palmitoyl-CoA-specific delta9 fatty acid desaturase from Caenorhabditis elegans.
    Watts JL; Browse J
    Biochem Biophys Res Commun; 2000 May; 272(1):263-9. PubMed ID: 10872837
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An explicit test of the phospholipid saturation hypothesis of acquired cold tolerance in Caenorhabditis elegans.
    Murray P; Hayward SA; Govan GG; Gracey AY; Cossins AR
    Proc Natl Acad Sci U S A; 2007 Mar; 104(13):5489-94. PubMed ID: 17369360
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.