These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 29998253)

  • 41. Glycosylphosphatidylinositols are potential targets for the development of novel inhibitors for aerolysin-type of pore-forming bacterial toxins.
    Wu Q; Guo Z
    Med Res Rev; 2010 Mar; 30(2):258-69. PubMed ID: 19557762
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A General Strategy of Aerolysin Nanopore Detection for Oligonucleotides with the Secondary Structure.
    Liao DF; Cao C; Ying YL; Long YT
    Small; 2018 May; 14(18):e1704520. PubMed ID: 29603609
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.
    Cao C; Long YT
    Acc Chem Res; 2018 Feb; 51(2):331-341. PubMed ID: 29364650
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Laetiporus sulphureus lectin and aerolysin protein family.
    Mancheño JM; Tateno H; Sher D; Goldstein IJ
    Adv Exp Med Biol; 2010; 677():67-80. PubMed ID: 20687481
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Preliminary crystallographic analysis of two oligomerization-deficient mutants of the aerolysin toxin, H132D and H132N, in their proteolyzed forms.
    Pernot L; Schiltz M; van der Goot FG
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2010 Dec; 66(Pt 12):1626-30. PubMed ID: 21139211
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pore-forming toxins as tools for polymer analytics: From sizing to sequencing.
    Piguet F; Ensslen T; Bakshloo MA; Talarimoghari M; Ouldali H; Baaken G; Zaitseva E; Pastoriza-Gallego M; Behrends JC; Oukhaled A
    Methods Enzymol; 2021; 649():587-634. PubMed ID: 33712201
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oligomerization of the channel-forming toxin aerolysin precedes insertion into lipid bilayers.
    van der Goot FG; Pattus F; Wong KR; Buckley JT
    Biochemistry; 1993 Mar; 32(10):2636-42. PubMed ID: 7680572
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Translocation of Precision Polymers through Biological Nanopores.
    Boukhet M; König NF; Ouahabi AA; Baaken G; Lutz JF; Behrends JC
    Macromol Rapid Commun; 2017 Dec; 38(24):. PubMed ID: 29144014
    [TBL] [Abstract][Full Text] [Related]  

  • 49. X-ray and Cryo-electron Microscopy Structures of Monalysin Pore-forming Toxin Reveal Multimerization of the Pro-form.
    Leone P; Bebeacua C; Opota O; Kellenberger C; Klaholz B; Orlov I; Cambillau C; Lemaitre B; Roussel A
    J Biol Chem; 2015 May; 290(21):13191-201. PubMed ID: 25847242
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Clostridium perfringens epsilon-toxin shows structural similarity to the pore-forming toxin aerolysin.
    Cole AR; Gibert M; Popoff M; Moss DS; Titball RW; Basak AK
    Nat Struct Mol Biol; 2004 Aug; 11(8):797-8. PubMed ID: 15258571
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Single molecule atomic force microscopy of aerolysin pore complexes reveals unexpected star-shaped topography.
    He J; Wang J; Hu J; Sun J; Czajkowsky DM; Shao Z
    J Mol Recognit; 2016 Apr; 29(4):174-81. PubMed ID: 26537438
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Crystal structure of Cry51Aa1: A potential novel insecticidal aerolysin-type β-pore-forming toxin from Bacillus thuringiensis.
    Xu C; Chinte U; Chen L; Yao Q; Meng Y; Zhou D; Bi LJ; Rose J; Adang MJ; Wang BC; Yu Z; Sun M
    Biochem Biophys Res Commun; 2015 Jul; 462(3):184-9. PubMed ID: 25957471
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structure of the food-poisoning Clostridium perfringens enterotoxin reveals similarity to the aerolysin-like pore-forming toxins.
    Briggs DC; Naylor CE; Smedley JG; Lukoyanova N; Robertson S; Moss DS; McClane BA; Basak AK
    J Mol Biol; 2011 Oct; 413(1):138-49. PubMed ID: 21839091
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Wild type, mutant protein unfolding and phase transition detected by single-nanopore recording.
    Merstorf C; Cressiot B; Pastoriza-Gallego M; Oukhaled A; Betton JM; Auvray L; Pelta J
    ACS Chem Biol; 2012 Apr; 7(4):652-8. PubMed ID: 22260417
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural, physicochemical and dynamic features conserved within the aerolysin pore-forming toxin family.
    Cirauqui N; Abriata LA; van der Goot FG; Dal Peraro M
    Sci Rep; 2017 Oct; 7(1):13932. PubMed ID: 29066778
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Controlled Genetic Encoding of Unnatural Amino Acids in a Protein Nanopore.
    Wu XY; Li MY; Yang SJ; Jiang J; Ying YL; Chen PR; Long YT
    Angew Chem Int Ed Engl; 2023 Jul; 62(29):e202300582. PubMed ID: 37195576
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Trypsin-Amplified Aerolysin Nanopore Amplified Sandwich Assay for Attomolar Nucleic Acid and Single Bacteria Detection.
    Song F; Deng R; Liu H; Wang A; Ma C; Wei Y; Cui X; Wan Y; Li J
    Anal Chem; 2019 Nov; 91(21):14043-14048. PubMed ID: 31577421
    [TBL] [Abstract][Full Text] [Related]  

  • 58. β-Barrel Nanopores with an Acidic-Aromatic Sensing Region Identify Proteinogenic Peptides at Low pH.
    Versloot RCA; Straathof SAP; Stouwie G; Tadema MJ; Maglia G
    ACS Nano; 2022 May; 16(5):7258-7268. PubMed ID: 35302739
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mega assemblages of oligomeric aerolysin-like toxins stabilized by toxin-associating membrane proteins.
    Shimada H; Kitada S
    J Biochem; 2011 Jan; 149(1):103-15. PubMed ID: 20971989
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transport of alpha-helical peptides through alpha-hemolysin and aerolysin pores.
    Stefureac R; Long YT; Kraatz HB; Howard P; Lee JS
    Biochemistry; 2006 Aug; 45(30):9172-9. PubMed ID: 16866363
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.