BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 29998446)

  • 1. Detection, extinguishing, and monitoring of a coal fire in Xinjiang, China.
    Shao Z; Jia X; Zhong X; Wang D; Wei J; Wang Y; Chen L
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):26603-26616. PubMed ID: 29998446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Firefighting of subsurface coal fires with comprehensive techniques for detection and control: a case study of the Fukang coal fire in the Xinjiang region of China.
    Tan B; Zhang F; Zhang Q; Wei H; Shao Z
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):29570-29584. PubMed ID: 31422530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment of smouldering coal refuse piles: an application in China.
    Shao Z; Wang D; Cao K; Si W; Li Y; Liu J
    Environ Technol; 2020 Sep; 41(23):3105-3118. PubMed ID: 30896338
    [No Abstract]   [Full Text] [Related]  

  • 4. Novel approach for extinguishing large-scale coal fires using gas-liquid foams in open pit mines.
    Lu X; Wang D; Qin B; Tian F; Shi G; Dong S
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18363-71. PubMed ID: 26370817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive method to prevent top-coal spontaneous combustion utilizing dry ice as a fire extinguishing medium: test apparatus development and field application.
    Qin Y; Guo W; Xu H; Song Y; Chen Y; Ma L
    Environ Sci Pollut Res Int; 2022 Mar; 29(13):19741-19751. PubMed ID: 34719762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China.
    Kong B; Li Z; Yang Y; Liu Z; Yan D
    Environ Sci Pollut Res Int; 2017 Oct; 24(30):23453-23470. PubMed ID: 28924728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the potential risk of coal fire to local environment: A case study of Daquanhu coal fire, Xinjiang region, China.
    Zeng Q; Dong J; Zhao L
    Sci Total Environ; 2018 Nov; 640-641():1478-1488. PubMed ID: 30021314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research progress and visualization of underground coal fire detection methods.
    Wang T; Wang H; Fang X; Wang G; Chen Y; Xu Z; Qi Q
    Environ Sci Pollut Res Int; 2023 Jun; 30(30):74671-74690. PubMed ID: 37233933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mercury emission from underground coal fires in the mining goaf of the Wuda Coalfield, China.
    Shan B; Wang G; Cao F; Wu D; Liang W; Sun R
    Ecotoxicol Environ Saf; 2019 Oct; 182():109409. PubMed ID: 31288123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research on the fire extinguishing performance of new gel foam for preventing and controlling the spontaneous combustion of coal gangue.
    Liu C; Zhang R; Wang Z; Zhang X
    Environ Sci Pollut Res Int; 2023 Aug; 30(38):88548-88562. PubMed ID: 37436620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implementation of paste backfill mining technology in Chinese coal mines.
    Chang Q; Chen J; Zhou H; Bai J
    ScientificWorldJournal; 2014; 2014():821025. PubMed ID: 25258737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous monitoring system of gob temperature and its application.
    Qin Y; Yan L; Liu W; Xu H; Song Y; Guo W
    Environ Sci Pollut Res Int; 2022 Jul; 29(35):53063-53075. PubMed ID: 35279753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research on the technology of detection and risk assessment of fire areas in gangue hills.
    Wang H; Tan B; Zhang X
    Environ Sci Pollut Res Int; 2020 Nov; 27(31):38776-38787. PubMed ID: 32632694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection and management of coal seam outcrop fire in China: a case study.
    Liu Y; Qi X; Luo D; Zhang Y; Qin J
    Sci Rep; 2024 Feb; 14(1):4609. PubMed ID: 38409355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on N2-inhibitor-water mist fire prevention and extinguishing technology and equipment in coal mine goaf.
    Liu H; Wang F
    PLoS One; 2019; 14(9):e0222003. PubMed ID: 31483841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Fire fighting with nitrogen in the German coal mining industry].
    Kock FJ
    Rev Inst Hyg Mines (Hasselt); 1983; 38(2):160-5. PubMed ID: 6622913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A visual knowledge map analysis of mine fire research based on CiteSpace.
    Wang F; Tan B; Chen Y; Fang X; Jia G; Wang H; Cheng G; Shao Z
    Environ Sci Pollut Res Int; 2022 Nov; 29(51):77609-77624. PubMed ID: 35680744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mercury sources in a subterranean spontaneous combustion area.
    Li C; Sun J; Shi J; Liang H; Cao Q; Li Z; Gao Y
    Ecotoxicol Environ Saf; 2020 Sep; 201():110863. PubMed ID: 32544749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The analysis and application of granular backfill material to reduce surface subsidence in China's northwest coal mining area.
    Bai E; Guo W; Tan Y; Yang D
    PLoS One; 2018; 13(7):e0201112. PubMed ID: 30036401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the environmental impacts of coal mining using remote sensing and in situ measurements in Ruqigou Coalfield, China.
    Saini V; Li J; Yang Y; Li J; Wang B; Tan J
    Environ Monit Assess; 2022 Sep; 194(10):780. PubMed ID: 36098888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.