These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 29998551)

  • 41. Contamination of tomatoes with coliforms and Escherichia coli on farms and in markets of northwest Nigeria.
    Shenge KC; Whong CM; Yakubu LL; Omolehin RA; Erbaugh JM; Miller SA; LeJeune JT
    J Food Prot; 2015 Jan; 78(1):57-64. PubMed ID: 25581178
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Factors Associated with the Prevalence of Salmonella, Generic Escherichia coli, and Coliforms in Florida's Agricultural Soils.
    Diekman CM; Cook C; Strawn LK; Danyluk MD
    J Food Prot; 2024 May; 87(5):100265. PubMed ID: 38492643
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Association of farm management practices with risk of Escherichia coli contamination in pre-harvest produce grown in Minnesota and Wisconsin.
    Mukherjee A; Speh D; Diez-Gonzalez F
    Int J Food Microbiol; 2007 Dec; 120(3):296-302. PubMed ID: 17997496
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Occurrence of generic Escherichia coli, E. coli O157 and Salmonella spp. in water and sediment from leafy green produce farms and streams on the Central California coast.
    Benjamin L; Atwill ER; Jay-Russell M; Cooley M; Carychao D; Gorski L; Mandrell RE
    Int J Food Microbiol; 2013 Jul; 165(1):65-76. PubMed ID: 23697918
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Low density-microplastics detected in sheep faeces and soil: A case study from the intensive vegetable farming in Southeast Spain.
    Beriot N; Peek J; Zornoza R; Geissen V; Huerta Lwanga E
    Sci Total Environ; 2021 Feb; 755(Pt 1):142653. PubMed ID: 33069476
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Persistence of Escherichia coli in the soil of an organic mixed crop-livestock farm that integrates sheep grazing within vegetable fields.
    Patterson L; Navarro-Gonzalez N; Jay-Russell MT; Aminabadi P; Antaki-Zukoski E; Pires AFA
    Zoonoses Public Health; 2018 Nov; 65(7):887-896. PubMed ID: 29998551
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Water quality and the grazing animal.
    Hubbard RK; Newton GL; Hill GM
    J Anim Sci; 2004; 82 E-Suppl():E255-263. PubMed ID: 15471806
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fate of Escherichia coli O157:H7 and Salmonella enterica in the manure-amended soil-plant ecosystem of fresh vegetable crops: a review.
    Ongeng D; Geeraerd AH; Springael D; Ryckeboer J; Muyanja C; Mauriello G
    Crit Rev Microbiol; 2015; 41(3):273-94. PubMed ID: 24083946
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Using dual-purpose crops in sheep-grazing systems.
    Dove H; Kirkegaard J
    J Sci Food Agric; 2014 May; 94(7):1276-83. PubMed ID: 24323974
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Control of enteric pathogens in ready-to-eat vegetable crops in organic and 'low input' production systems: a HACCP-based approach.
    Leifert C; Ball K; Volakakis N; Cooper JM
    J Appl Microbiol; 2008 Oct; 105(4):931-50. PubMed ID: 18397255
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Review: Role of herbivores in sustainable agriculture in Sub-Saharan Africa.
    Ayantunde AA; Duncan AJ; van Wijk MT; Thorne P
    Animal; 2018 Dec; 12(s2):s199-s209. PubMed ID: 30139396
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Zoonotic bacterial pathogens and mixed crop-livestock farming.
    Salaheen S; Chowdhury N; Hanning I; Biswas D
    Poult Sci; 2015 Jun; 94(6):1398-1410. PubMed ID: 25589077
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Fate of Foodborne Pathogens in Manure Treated Soil.
    Black Z; Balta I; Black L; Naughton PJ; Dooley JSG; Corcionivoschi N
    Front Microbiol; 2021; 12():781357. PubMed ID: 34956145
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Animal management to reduce phosphorus losses to the environment.
    Knowlton KF; Radcliffe JS; Novak CL; Emmerson DA
    J Anim Sci; 2004; 82 E-Suppl():E173-195. PubMed ID: 15471797
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Eco-efficient approaches to land management: a case for increased integration of crop and animal production systems.
    Wilkins RJ
    Philos Trans R Soc Lond B Biol Sci; 2008 Feb; 363(1491):517-25. PubMed ID: 17652073
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Integrated Crop-Livestock Systems and Water Quality in the Northern Great Plains: Review of Current Practices and Future Research Needs.
    Faust DR; Kumar S; Archer DW; Hendrickson JR; Kronberg SL; Liebig MA
    J Environ Qual; 2018 Jan; 47(1):1-15. PubMed ID: 29415112
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Animal production and soil characteristics from integrated crop-livestock systems: toward sustainable intensification.
    Carvalho PCF; Peterson CA; Nunes PAA; Martins AP; de Souza Filho W; Bertolazi VT; Kunrath TR; de Moraes A; Anghinoni I
    J Anim Sci; 2018 Jul; 96(8):3513-3525. PubMed ID: 29917103
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Food Safety Risks of Harvesting Dropped and Drooping Produce: A Review.
    Doren J; Hadad R; McKEAG L; Tucker C; Newbold E
    J Food Prot; 2022 Apr; 85(4):571-582. PubMed ID: 34914837
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A review of water quality concerns in livestock farming areas.
    Hooda PS; Edwards AC; Anderson HA; Miller A
    Sci Total Environ; 2000 Apr; 250(1-3):143-67. PubMed ID: 10811258
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.