These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 29998774)

  • 1. Effect of blade curvature on the hemolytic and hydraulic characteristics of a centrifugal blood pump.
    Ozturk C; Aka IB; Lazoglu I
    Int J Artif Organs; 2018 Nov; 41(11):730-737. PubMed ID: 29998774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impeller (straight blade) design variations and their influence on the performance of a centrifugal blood pump.
    Fang P; Du J; Yu S
    Int J Artif Organs; 2020 Dec; 43(12):782-795. PubMed ID: 32312159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the influence of blade configuration on the hemodynamic performance and blood damage of the centrifugal blood pump.
    Li Y; Yu J; Wang H; Xi Y; Deng X; Chen Z; Fan Y
    Artif Organs; 2022 Sep; 46(9):1817-1832. PubMed ID: 35436361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Numerical study of the effect of geometrical parameters of straight impellers on the flow and hemolysis performance of centrifugal blood pumps].
    Huang D; Xiong S; Xiao Y; Wang J; Cui G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Jun; 41(3):577-583. PubMed ID: 38932545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The flow patterns within the impeller passages of a centrifugal blood pump model.
    Yu SC; Ng BT; Chan WK; Chua LP
    Med Eng Phys; 2000 Jul; 22(6):381-93. PubMed ID: 11086249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of rotor impeller structure on performance improvement of suspended axial flow blood pumps.
    Wang L; Yun Z; Tang X; Xiang C
    Int J Artif Organs; 2024 Mar; 47(3):162-172. PubMed ID: 38450429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV).
    Hariharan P; Aycock KI; Buesen M; Day SW; Good BC; Herbertson LH; Steinseifer U; Manning KB; Craven BA; Malinauskas RA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impeller design for a miniaturized centrifugal blood pump.
    Takano T; Schulte-Eistrup S; Yoshikawa M; Nakata K; Kawahito S; Maeda T; Nonaka K; Linneweber J; Glueck J; Fujisawa A; Makinouchi K; Yokokawa M; Nosé Y
    Artif Organs; 2000 Oct; 24(10):821-5. PubMed ID: 11091172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of the Baylor/NASA axial flow ventricular assist device: in vitro performance and systematic hemolysis test results.
    Mizuguchi K; Damm GA; Bozeman RJ; Akkerman JW; Aber GS; Svejkovsky PA; Bacak JW; Orime Y; Takatani S; Nosé Y
    Artif Organs; 1994 Jan; 18(1):32-43. PubMed ID: 8141655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational modeling of the Food and Drug Administration's benchmark centrifugal blood pump.
    Good BC; Manning KB
    Artif Organs; 2020 Jul; 44(7):E263-E276. PubMed ID: 31971269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of design methods of a centrifugal blood pump with in vitro tests, flow visualization, and computational fluid dynamics: results in hemolysis tests.
    Takiura K; Masuzawa T; Endo S; Wakisaka Y; Tatsumi E; Taenaka Y; Takano H; Yamane T; Nishida M; Asztalos B; Konishi Y; Miyazoe Y; Ito K
    Artif Organs; 1998 May; 22(5):393-8. PubMed ID: 9609347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical study of a bio-centrifugal blood pump with straight impeller blade profiles.
    Song G; Chua LP; Lim TM
    Artif Organs; 2010 Feb; 34(2):98-104. PubMed ID: 19817732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational fluid dynamics analysis of blade tip clearances on hemodynamic performance and blood damage in a centrifugal ventricular assist device.
    Wu J; Paden BE; Borovetz HS; Antaki JF
    Artif Organs; 2010 May; 34(5):402-11. PubMed ID: 19832736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of a centrifugal blood pump designed using an industrial method through experimental and numerical study.
    Yazdanpanah-Ardakani K; Niroomand-Oscuii H; Sahebi-Kuzeh Kanan R; Shokri N
    Sci Rep; 2024 Mar; 14(1):7443. PubMed ID: 38548818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of rotor configurations on hemodynamic features, hemocompatibility and dynamic balance of the centrifugal blood pump: A numerical study.
    Li Y; Xi Y; Wang H; Sun A; Deng X; Chen Z; Fan Y
    Int J Numer Method Biomed Eng; 2023 Feb; 39(2):e3671. PubMed ID: 36507614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Fluid Dynamics Model of Continuous-Flow Total Artificial Heart: Right Pump Impeller Design Changes to Improve Biocompatibility.
    Goodin MS; Horvath DJ; Kuban BD; Polakowski AR; Fukamachi K; Flick CR; Karimov JH
    ASAIO J; 2022 Jun; 68(6):829-838. PubMed ID: 34560715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of a bearing gap on hemolytic property in a hydrodynamically levitated centrifugal blood pump with a semi-open impeller.
    Kosaka R; Nishida M; Maruyama O; Yambe T; Imachi K; Yamane T
    Biomed Mater Eng; 2013; 23(1-2):37-47. PubMed ID: 23442235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical investigation of the effect of blade geometry on blood trauma in a centrifugal blood pump.
    Chan WK; Wong YW; Ding Y; Chua LP; Yu SC
    Artif Organs; 2002 Sep; 26(9):785-93. PubMed ID: 12197935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of hydraulic and hemolytic properties of different impeller designs of an implantable rotary blood pump by computational fluid dynamics.
    Arvand A; Hahn N; Hormes M; Akdis M; Martin M; Reul H
    Artif Organs; 2004 Oct; 28(10):892-8. PubMed ID: 15384994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Centrifugal blood pump for temporary ventricular assist devices with low priming and ceramic bearings.
    Leme J; da Silva C; Fonseca J; da Silva BU; Uebelhart B; Biscegli JF; Andrade A
    Artif Organs; 2013 Nov; 37(11):942-5. PubMed ID: 24219168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.