These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 29999047)
21. An approach to give prospective life-span of the copper/low-density-polyethylene nanocomposite intrauterine device. Xia X; Tang Y; Xie C; Wang Y; Cai S; Zhu C J Mater Sci Mater Med; 2011 Jul; 22(7):1773-81. PubMed ID: 21604052 [TBL] [Abstract][Full Text] [Related]
23. IDM release behavior and surface characteristics of the novel Cu/IDM/LDPE nanocomposite for intrauterine device. Yang Z; Xie C; Xiang H; Feng J; Xia X; Cai S Colloids Surf B Biointerfaces; 2009 Mar; 69(2):276-80. PubMed ID: 19124230 [TBL] [Abstract][Full Text] [Related]
24. Decrease in cytotoxicity of copper-based intrauterine devices (IUD) pretreated with 6-mercaptopurine and pterin as biocompatible corrosion inhibitors. Alvarez F; Grillo C; Schilardi P; Rubert A; Benítez G; Lorente C; de Mele MF ACS Appl Mater Interfaces; 2013 Jan; 5(2):249-55. PubMed ID: 23252335 [TBL] [Abstract][Full Text] [Related]
25. Investigation of the release behavior of cupric ion for three types of Cu-IUDs and indomethacin for medicated Cu-IUD in simulated uterine fluid. Jinying L; Ying L; Xuan G; Yanli G; Jianping L Contraception; 2008 Apr; 77(4):299-302. PubMed ID: 18342655 [TBL] [Abstract][Full Text] [Related]
26. Study on the mechanical properties of Cu/LDPE composite IUDs. Tang Y; Xia X; Wang Y; Xie C Contraception; 2011 Mar; 83(3):255-62. PubMed ID: 21310288 [TBL] [Abstract][Full Text] [Related]
27. The forces imposed by the novel T-shape Cu/LDPE nanocomposite intrauterine devices on the simulated uterine cavity. Xia X; Xie C; Wang Y; Cai S; Zhu C; Yang X Contraception; 2007 Oct; 76(4):326-30. PubMed ID: 17900446 [TBL] [Abstract][Full Text] [Related]
28. One-step synthesis of novel Cu@polymer nanocomposites through a self-activated route and their application as nonenzymatic glucose sensors. Tong Y; Xu J; Jiang H; Gao F; Lu Q Dalton Trans; 2017 Aug; 46(30):9918-9924. PubMed ID: 28725890 [TBL] [Abstract][Full Text] [Related]
29. Green synthesis and characterization of novel gold nanocomposites for electrochemical sensing applications. Tanwar S; Ho JA; Magi E Talanta; 2013 Dec; 117():352-8. PubMed ID: 24209352 [TBL] [Abstract][Full Text] [Related]
30. Green synthesis of copper nanoparticles using Ginkgo biloba L. leaf extract and their catalytic activity for the Huisgen [3+2] cycloaddition of azides and alkynes at room temperature. Nasrollahzadeh M; Sajadi SM J Colloid Interface Sci; 2015 Nov; 457():141-7. PubMed ID: 26164245 [TBL] [Abstract][Full Text] [Related]
31. [The role of copper-releasing intrauterine device or levonorgestrel-releasing intrauterine system on uterine bleeding and iron status (prospective study of 8 years)]. Imperato F; Perniola G; Mossa B; Marziani R; Perniola F; Stragapede B; Napolitano C Minerva Ginecol; 2002 Jun; 54(3):271-8. PubMed ID: 12063443 [TBL] [Abstract][Full Text] [Related]
32. Preparation and properties of cellulose nanocomposite films with in situ generated copper nanoparticles using Terminalia catappa leaf extract. Muthulakshmi L; Rajini N; Nellaiah H; Kathiresan T; Jawaid M; Rajulu AV Int J Biol Macromol; 2017 Feb; 95():1064-1071. PubMed ID: 27984140 [TBL] [Abstract][Full Text] [Related]
33. Comparative contraceptive effectiveness of levonorgestrel-releasing and copper intrauterine devices: the European Active Surveillance Study for Intrauterine Devices. Heinemann K; Reed S; Moehner S; Minh TD Contraception; 2015 Apr; 91(4):280-3. PubMed ID: 25601350 [TBL] [Abstract][Full Text] [Related]
34. Antifertility effectiveness of a novel copper-containing intrauterine device material and its influence on the endometrial environment in rats. Hu S; Wang Y; Ke D; Zhou F; Cheng G; Xia W; Zhu C Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():444-455. PubMed ID: 29752117 [TBL] [Abstract][Full Text] [Related]
35. Preparation and cupric ion release behavior of Cu/LDPE porous composites with tunable pore morphology for intrauterine devices. Xiao L; Xia X; Xie C; Ge M; Xiao C; Cai S Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2800-7. PubMed ID: 23623099 [TBL] [Abstract][Full Text] [Related]
36. Ultrasonic assisted fabrication of first MoO Naeimi A; Honarmand M; Sedri A Ultrason Sonochem; 2019 Jan; 50():331-338. PubMed ID: 30293738 [TBL] [Abstract][Full Text] [Related]
37. Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing. Li J; Zhai D; Lv F; Yu Q; Ma H; Yin J; Yi Z; Liu M; Chang J; Wu C Acta Biomater; 2016 May; 36():254-66. PubMed ID: 26965395 [TBL] [Abstract][Full Text] [Related]
38. Biological evaluation of the copper/low-density polyethylene nanocomposite intrauterine device. Hu LX; He J; Hou L; Wang H; Li J; Xie C; Duan Z; Sun LK; Wang X; Zhu C PLoS One; 2013; 8(9):e74128. PubMed ID: 24058521 [TBL] [Abstract][Full Text] [Related]
39. Release behavior of cupric ions for TCu380A and TCu220C IUDs. Cao B; Xi T; Zheng Y Biomed Mater; 2008 Dec; 3(4):044114. PubMed ID: 19029604 [TBL] [Abstract][Full Text] [Related]
40. Amphibious fluorescent carbon dots: one-step green synthesis and application for light-emitting polymer nanocomposites. Zhou L; He B; Huang J Chem Commun (Camb); 2013 Sep; 49(73):8078-80. PubMed ID: 23912331 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]