These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29999243)

  • 21. Fast deposition of an ultrathin, highly crystalline organic semiconductor film for high-performance transistors.
    Zhang X; Deng W; Lu B; Fang X; Zhang X; Jie J
    Nanoscale Horiz; 2020 Jul; 5(7):1096-1105. PubMed ID: 32424385
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low-voltage organic field-effect transistors and inverters enabled by ultrathin cross-linked polymers as gate dielectrics.
    Yoon MH; Yan H; Facchetti A; Marks TJ
    J Am Chem Soc; 2005 Jul; 127(29):10388-95. PubMed ID: 16028951
    [TBL] [Abstract][Full Text] [Related]  

  • 23. One-Volt, Solution-Processed Organic Transistors with Self-Assembled Monolayer-Ta
    Mohammadian N; Faraji S; Sagar S; Das BC; Turner ML; Majewski LA
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31408941
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scalable Ultrahigh-Speed Fabrication of Uniform Polycrystalline Thin Films for Organic Transistors.
    Wu H; Iino H; Hanna JI
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29497-29504. PubMed ID: 32436375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-performance organic circuits based on precisely aligned single-crystal arrays.
    Kang J; Lee M; Facchetti A; Kim J; Park SK
    RSC Adv; 2018 May; 8(31):17417-17420. PubMed ID: 35539227
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Sub-20 nm Organic/Inorganic Hybrid Dielectric for Ultralow-Power Organic Thin-Film Transistor (OTFT) With Enhanced Operational Stability.
    Choi J; Lee C; Kang J; Lee C; Lee SM; Oh J; Choi SY; Im SG
    Small; 2022 Sep; 18(39):e2203165. PubMed ID: 36026583
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Water-Processed Ultrathin Crystalline Indium-Boron-Oxide Channel for High-Performance Thin-Film Transistor Applications.
    Xu W; Peng T; Li Y; Xu F; Zhang Y; Zhao C; Fang M; Han S; Zhu D; Cao P; Liu W; Lu Y
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407244
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stable organic thin-film transistors.
    Jia X; Fuentes-Hernandez C; Wang CY; Park Y; Kippelen B
    Sci Adv; 2018 Jan; 4(1):eaao1705. PubMed ID: 29340301
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes.
    Cao X; Chen H; Gu X; Liu B; Wang W; Cao Y; Wu F; Zhou C
    ACS Nano; 2014 Dec; 8(12):12769-76. PubMed ID: 25497107
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spontaneous Generation of a Molecular Thin Hydrophobic Skin Layer on a Sub-20 nm, High-
    Choi J; Yoon J; Kim MJ; Pak K; Lee C; Lee H; Jeong K; Ihm K; Yoo S; Cho BJ; Lee H; Im SG
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):29113-29123. PubMed ID: 31333023
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solution-Processable, Thin, and High-κ Dielectric Polyurea Gate Insulator with Strong Hydrogen Bonding for Low-Voltage Organic Thin-Film Transistors.
    Yoo S; Kim DG; Ha T; Chan Won J; Jang KS; Kim YH
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32462-32470. PubMed ID: 30175586
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flexible, Low-Power Thin-Film Transistors Made of Vapor-Phase Synthesized High-k, Ultrathin Polymer Gate Dielectrics.
    Choi J; Joo M; Seong H; Pak K; Park H; Park CW; Im SG
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20808-20817. PubMed ID: 28569054
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Imperceptible and Ultraflexible p-Type Transistors and Macroelectronics Based on Carbon Nanotubes.
    Cao X; Cao Y; Zhou C
    ACS Nano; 2016 Jan; 10(1):199-206. PubMed ID: 26624921
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flexible small-channel thin-film transistors by electrohydrodynamic lithography.
    Ding Y; Zhu C; Liu J; Duan Y; Yi Z; Xiao J; Wang S; Huang Y; Yin Z
    Nanoscale; 2017 Dec; 9(48):19050-19057. PubMed ID: 29094745
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Decoding the Vertical Phase Separation and Its Impact on C8-BTBT/PS Transistor Properties.
    Pérez-Rodríguez A; Temiño I; Ocal C; Mas-Torrent M; Barrena E
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):7296-7303. PubMed ID: 29405695
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insulating Polymer Blend Organic Thin-Film Transistors Based on Bilayer-Type Alkylated Benzothieno[3,2-
    Miyata R; Inoue S; Nakajima K; Hasegawa T
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17719-17726. PubMed ID: 35380772
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low-Voltage, High-Performance Flexible Organic Field-Effect Transistors Based on Ultrathin Single-Crystal Microribbons.
    Chen H; Xing X; Zhu M; Cao J; Ali MU; Li A; He Y; Meng H
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):34188-34195. PubMed ID: 31456391
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-Mobility Fungus-Triggered Biodegradable Ultraflexible Organic Transistors.
    Yang Y; Sun H; Zhao X; Xian D; Han X; Wang B; Wang S; Zhang M; Zhang C; Ye X; Ni Y; Tong Y; Tang Q; Liu Y
    Adv Sci (Weinh); 2022 May; 9(13):e2105125. PubMed ID: 35257518
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Organic semiconductors based on [1]benzothieno[3,2-b][1]benzothiophene substructure.
    Takimiya K; Osaka I; Mori T; Nakano M
    Acc Chem Res; 2014 May; 47(5):1493-502. PubMed ID: 24785263
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface modification of polyimide gate insulators for solution-processed 2,7-didecyl[1]benzothieno[3,2-b][1]benzothiophene (C10-BTBT) thin-film transistors.
    Jang KS; Kim WS; Won JM; Kim YH; Myung S; Ka JW; Kim J; Ahn T; Yi MH
    Phys Chem Chem Phys; 2013 Jan; 15(3):950-6. PubMed ID: 23202696
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.