These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 29999490)

  • 1. Multisite dependency of an E3 ligase controls monoubiquitylation-dependent cell fate decisions.
    Werner A; Baur R; Teerikorpi N; Kaya DU; Rape M
    Elife; 2018 Jul; 7():. PubMed ID: 29999490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-fate determination by ubiquitin-dependent regulation of translation.
    Werner A; Iwasaki S; McGourty CA; Medina-Ruiz S; Teerikorpi N; Fedrigo I; Ingolia NT; Rape M
    Nature; 2015 Sep; 525(7570):523-7. PubMed ID: 26399832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-adaptor driven assembly of a CUL3 E3 ligase complex.
    Akopian D; McGourty CA; Rapé M
    Mol Cell; 2022 Feb; 82(3):585-597.e11. PubMed ID: 35120648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CUL3 and protein kinases: insights from PLK1/KLHL22 interaction.
    Metzger T; Kleiss C; Sumara I
    Cell Cycle; 2013 Jul; 12(14):2291-6. PubMed ID: 24067371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the CUL3 Ubiquitin Ligase by a Calcium-Dependent Co-adaptor.
    McGourty CA; Akopian D; Walsh C; Gorur A; Werner A; Schekman R; Bautista D; Rape M
    Cell; 2016 Oct; 167(2):525-538.e14. PubMed ID: 27716508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BTB protein, dKLHL18/CG3571, serves as an adaptor subunit for a dCul3 ubiquitin ligase complex.
    Fujiyama-Nakamura S; Ito S; Sawatsubashi S; Yamauchi Y; Suzuki E; Tanabe M; Kimura S; Murata T; Isobe T; Takeyama K; Kato S
    Genes Cells; 2009 Aug; 14(8):965-73. PubMed ID: 19624754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CAND1-mediated substrate adaptor recycling is required for efficient repression of Nrf2 by Keap1.
    Lo SC; Hannink M
    Mol Cell Biol; 2006 Feb; 26(4):1235-44. PubMed ID: 16449638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase.
    Furukawa M; Xiong Y
    Mol Cell Biol; 2005 Jan; 25(1):162-71. PubMed ID: 15601839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. KCTD2, an adaptor of Cullin3 E3 ubiquitin ligase, suppresses gliomagenesis by destabilizing c-Myc.
    Kim EJ; Kim SH; Jin X; Jin X; Kim H
    Cell Death Differ; 2017 Apr; 24(4):649-659. PubMed ID: 28060381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Cul3-based E3 ligase removes Aurora B from mitotic chromosomes, regulating mitotic progression and completion of cytokinesis in human cells.
    Sumara I; Quadroni M; Frei C; Olma MH; Sumara G; Ricci R; Peter M
    Dev Cell; 2007 Jun; 12(6):887-900. PubMed ID: 17543862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zinc-binding triggers a conformational-switch in the cullin-3 substrate adaptor protein KEAP1 that controls transcription factor NRF2.
    McMahon M; Swift SR; Hayes JD
    Toxicol Appl Pharmacol; 2018 Dec; 360():45-57. PubMed ID: 30261176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ubiquitin-dependent remodeling of the actin cytoskeleton drives cell fusion.
    Rodríguez-Pérez F; Manford AG; Pogson A; Ingersoll AJ; Martínez-González B; Rape M
    Dev Cell; 2021 Mar; 56(5):588-601.e9. PubMed ID: 33609460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shooting the messenger: CULLIN' insulin signaling with Fbw8.
    Mieulet V; Lamb RF
    Dev Cell; 2008 Jun; 14(6):816-7. PubMed ID: 18539111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cul3 neddylation is crucial for gradual lipid droplet formation during adipogenesis.
    Dubiel D; Bintig W; Kähne T; Dubiel W; Naumann M
    Biochim Biophys Acta Mol Cell Res; 2017 Aug; 1864(8):1405-1412. PubMed ID: 28499918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CUL3-KBTBD6/KBTBD7 ubiquitin ligase cooperates with GABARAP proteins to spatially restrict TIAM1-RAC1 signaling.
    Genau HM; Huber J; Baschieri F; Akutsu M; Dötsch V; Farhan H; Rogov V; Behrends C
    Mol Cell; 2015 Mar; 57(6):995-1010. PubMed ID: 25684205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptor protein self-assembly drives the control of a cullin-RING ubiquitin ligase.
    Errington WJ; Khan MQ; Bueler SA; Rubinstein JL; Chakrabartty A; Privé GG
    Structure; 2012 Jul; 20(7):1141-53. PubMed ID: 22632832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. E3 ubiquitin ligases promote progression of differentiation during C. elegans embryogenesis.
    Du Z; He F; Yu Z; Bowerman B; Bao Z
    Dev Biol; 2015 Feb; 398(2):267-79. PubMed ID: 25523393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling.
    Jin Z; Li Y; Pitti R; Lawrence D; Pham VC; Lill JR; Ashkenazi A
    Cell; 2009 May; 137(4):721-35. PubMed ID: 19427028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breast cancer metastasis suppressor 1 (BRMS1) is destabilized by the Cul3-SPOP E3 ubiquitin ligase complex.
    Kim B; Nam HJ; Pyo KE; Jang MJ; Kim IS; Kim D; Boo K; Lee SH; Yoon JB; Baek SH; Kim JH
    Biochem Biophys Res Commun; 2011 Dec; 415(4):720-6. PubMed ID: 22085717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Casein kinase II phosphorylation of cyclin F at serine 621 regulates the Lys48-ubiquitylation E3 ligase activity of the SCF
    Lee A; Rayner SL; De Luca A; Gwee SSL; Morsch M; Sundaramoorthy V; Shahheydari H; Ragagnin A; Shi B; Yang S; Williams KL; Don EK; Walker AK; Zhang KY; Yerbury JJ; Cole NJ; Atkin JD; Blair IP; Molloy MP; Chung RS
    Open Biol; 2017 Oct; 7(10):. PubMed ID: 29021214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.