BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29999493)

  • 1. Optimized I-values for use with the Bragg additivity rule and their impact on proton stopping power and range uncertainty.
    Bär E; Andreo P; Lalonde A; Royle G; Bouchard H
    Phys Med Biol; 2018 Aug; 63(16):165007. PubMed ID: 29999493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inter-comparison of relative stopping power estimation models for proton therapy.
    Doolan PJ; Collins-Fekete CA; Dias MF; Ruggieri TA; D'Souza D; Seco J
    Phys Med Biol; 2016 Nov; 61(22):8085-8104. PubMed ID: 27781999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reassessment of stopping power ratio uncertainties caused by mean excitation energies using a water-based formalism.
    De Smet V; Labarbe R; Vander Stappen F; Macq B; Sterpin E
    Med Phys; 2018 Jul; 45(7):3361-3370. PubMed ID: 29729022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The clinical impact of uncertainties in the mean excitation energy of human tissues during proton therapy.
    Besemer A; Paganetti H; Bednarz B
    Phys Med Biol; 2013 Feb; 58(4):887-902. PubMed ID: 23337713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue decomposition from dual energy CT data for MC based dose calculation in particle therapy.
    Hünemohr N; Paganetti H; Greilich S; Jäkel O; Seco J
    Med Phys; 2014 Jun; 41(6):061714. PubMed ID: 24877809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regularised patient-specific stopping power calibration for proton therapy planning based on proton radiographic images.
    Krah N; Patera V; Rit S; Schiavi A; Rinaldi I
    Phys Med Biol; 2019 Mar; 64(6):065008. PubMed ID: 30708365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A linear, separable two-parameter model for dual energy CT imaging of proton stopping power computation.
    Han D; Siebers JV; Williamson JF
    Med Phys; 2016 Jan; 43(1):600. PubMed ID: 26745952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive analysis of proton range uncertainties related to patient stopping-power-ratio estimation using the stoichiometric calibration.
    Yang M; Zhu XR; Park PC; Titt U; Mohan R; Virshup G; Clayton JE; Dong L
    Phys Med Biol; 2012 Jul; 57(13):4095-115. PubMed ID: 22678123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Range uncertainties in proton therapy and the role of Monte Carlo simulations.
    Paganetti H
    Phys Med Biol; 2012 Jun; 57(11):R99-117. PubMed ID: 22571913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards subpercentage uncertainty proton stopping-power mapping via dual-energy CT: Direct experimental validation and uncertainty analysis of a statistical iterative image reconstruction method.
    Medrano M; Liu R; Zhao T; Webb T; Politte DG; Whiting BR; Liao R; Ge T; Porras-Chaverri MA; O'Sullivan JA; Williamson JF
    Med Phys; 2022 Mar; 49(3):1599-1618. PubMed ID: 35029302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Technical Note: Relative proton stopping power estimation from virtual monoenergetic images reconstructed from dual-layer computed tomography.
    Landry G; Dörringer F; Si-Mohamed S; Douek P; Abascal JFPJ; Peyrin F; Almeida IP; Verhaegen F; Rinaldi I; Parodi K; Rit S
    Med Phys; 2019 Apr; 46(4):1821-1828. PubMed ID: 30695108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A spot-specific range uncertainty framework for robust optimization of proton therapy treatments.
    Cohilis M; Souris K; Buti G; Chang CW; Lin L; Lee JA; Sterpin E
    Med Phys; 2023 Oct; 50(10):6554-6568. PubMed ID: 37676906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Technical Note: On the calculation of stopping-power ratio for stoichiometric calibration in proton therapy.
    Ödén J; Zimmerman J; Bujila R; Nowik P; Poludniowski G
    Med Phys; 2015 Sep; 42(9):5252-7. PubMed ID: 26328974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dosimetric accuracy and radiobiological implications of ion computed tomography for proton therapy treatment planning.
    Meyer S; Kamp F; Tessonnier T; Mairani A; Belka C; Carlson DJ; Gianoli C; Parodi K
    Phys Med Biol; 2019 Jun; 64(12):125008. PubMed ID: 30870831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo calculation of beam quality correction factors in proton beams using detailed simulation of ionization chambers.
    Gomà C; Andreo P; Sempau J
    Phys Med Biol; 2016 Mar; 61(6):2389-406. PubMed ID: 26943497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental validation of two dual-energy CT methods for proton therapy using heterogeneous tissue samples.
    Bär E; Lalonde A; Zhang R; Jee KW; Yang K; Sharp G; Liu B; Royle G; Bouchard H; Lu HM
    Med Phys; 2018 Jan; 45(1):48-59. PubMed ID: 29134674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of elemental tissue composition following proton treatment using positron emission tomography.
    Cho J; Ibbott G; Gillin M; Gonzalez-Lepera C; Min CH; Zhu X; El Fakhri G; Paganetti H; Mawlawi O
    Phys Med Biol; 2013 Jun; 58(11):3815-35. PubMed ID: 23681070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dose to 'water-like' media or dose to tissue in MV photons radiotherapy treatment planning: still a matter of debate.
    Andreo P
    Phys Med Biol; 2015 Jan; 60(1):309-37. PubMed ID: 25503312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revisiting the single-energy CT calibration for proton therapy treatment planning: a critical look at the stoichiometric method.
    Gomà C; Almeida IP; Verhaegen F
    Phys Med Biol; 2018 Nov; 63(23):235011. PubMed ID: 30474618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simulation study on proton computed tomography (CT) stopping power accuracy using dual energy CT scans as benchmark.
    Hansen DC; Seco J; Sørensen TS; Petersen JB; Wildberger JE; Verhaegen F; Landry G
    Acta Oncol; 2015; 54(9):1638-42. PubMed ID: 26219959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.