BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 29999507)

  • 1. Unique selectivity trends of highly permeable PAP[5] water channel membranes.
    Song W; Shen YX; Lang C; Saha P; Zenyuk IV; Hickey RJ; Kumar M
    Faraday Discuss; 2018 Sep; 209(0):193-204. PubMed ID: 29999507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water Dynamics in a Peptide-appended Pillar[5]arene Artificial Channel in Lipid and Biomimetic Membranes.
    Barden DR; Vashisth H
    Front Chem; 2021; 9():753635. PubMed ID: 34778209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly permeable artificial water channels that can self-assemble into two-dimensional arrays.
    Shen YX; Si W; Erbakan M; Decker K; De Zorzi R; Saboe PO; Kang YJ; Majd S; Butler PJ; Walz T; Aksimentiev A; Hou JL; Kumar M
    Proc Natl Acad Sci U S A; 2015 Aug; 112(32):9810-5. PubMed ID: 26216964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancing Ion Separation: Covalent-Organic-Framework Membranes for Sustainable Energy and Water Applications.
    Xian W; Wu D; Lai Z; Wang S; Sun Q
    Acc Chem Res; 2024 Jul; ():. PubMed ID: 38950424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational dynamics and interfacial interactions of peptide-appended pillar[5]arene water channels in biomimetic membranes.
    Liu Y; Vashisth H
    Phys Chem Chem Phys; 2019 Oct; 21(41):22711-22721. PubMed ID: 31454001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes.
    Shen YX; Song W; Barden DR; Ren T; Lang C; Feroz H; Henderson CB; Saboe PO; Tsai D; Yan H; Butler PJ; Bazan GC; Phillip WA; Hickey RJ; Cremer PS; Vashisth H; Kumar M
    Nat Commun; 2018 Jun; 9(1):2294. PubMed ID: 29895901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperfast Water Transport through Biomimetic Nanochannels from Peptide-Attached (pR)-pillar[5]arene.
    Li Q; Li X; Ning L; Tan CH; Mu Y; Wang R
    Small; 2019 Feb; 15(6):e1804678. PubMed ID: 30637936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic Separation of Transport and Matrix Functions in Lamellar Block Copolymer Channel-Based Membranes.
    Lang C; Ye D; Song W; Yao C; Tu YM; Capparelli C; LaNasa JA; Hickner MA; Gomez EW; Gomez ED; Hickey RJ; Kumar M
    ACS Nano; 2019 Jul; 13(7):8292-8302. PubMed ID: 31251576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic selectivity and filtration from fragmented dehydration in multilayer graphene nanopores.
    Sahu S; Zwolak M
    Nanoscale; 2017 Aug; 9(32):11424-11428. PubMed ID: 28767109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical Optimization of High-Performance Biomimetic and Bioinspired Membranes.
    Song W; Tu YM; Oh H; Samineni L; Kumar M
    Langmuir; 2019 Jan; 35(3):589-607. PubMed ID: 30577695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton- versus Cation-Selective Transport of Saccharide Rim-Appended Pillar[5]arene Artificial Water Channels.
    Andrei IM; Chen W; Baaden M; Vincent SP; Barboiu M
    J Am Chem Soc; 2023 Oct; 145(40):21904-21914. PubMed ID: 37771004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combinatorial Screening of Water/Proton Permeation of Self-Assembled Pillar[5]arene Artificial Water Channel Libraries.
    Andrei IM; Strilets D; Fa S; Baaden M; Ogoshi T; Barboiu M
    Angew Chem Int Ed Engl; 2023 Oct; 62(42):e202310812. PubMed ID: 37610532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selectivity and polarization in water channel membranes: lessons learned from polymeric membranes and CNTs.
    Freger V
    Faraday Discuss; 2018 Sep; 209(0):371-388. PubMed ID: 29972390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial water channels enable fast and selective water permeation through water-wire networks.
    Song W; Joshi H; Chowdhury R; Najem JS; Shen YX; Lang C; Henderson CB; Tu YM; Farell M; Pitz ME; Maranas CD; Cremer PS; Hickey RJ; Sarles SA; Hou JL; Aksimentiev A; Kumar M
    Nat Nanotechnol; 2020 Jan; 15(1):73-79. PubMed ID: 31844288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Filtration by Ultrathin and Highly Porous Silica Nanochannel Membranes: Permeability and Selectivity.
    Yang Q; Lin X; Su B
    Anal Chem; 2016 Oct; 88(20):10252-10258. PubMed ID: 27677337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid fabrication of precise high-throughput filters from membrane protein nanosheets.
    Tu YM; Song W; Ren T; Shen YX; Chowdhury R; Rajapaksha P; Culp TE; Samineni L; Lang C; Thokkadam A; Carson D; Dai Y; Mukthar A; Zhang M; Parshin A; Sloand JN; Medina SH; Grzelakowski M; Bhattacharya D; Phillip WA; Gomez ED; Hickey RJ; Wei Y; Kumar M
    Nat Mater; 2020 Mar; 19(3):347-354. PubMed ID: 31988513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tubular Unimolecular Transmembrane Channels: Construction Strategy and Transport Activities.
    Si W; Xin P; Li ZT; Hou JL
    Acc Chem Res; 2015 Jun; 48(6):1612-9. PubMed ID: 26017272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic Approach for Highly Selective Artificial Water Channels Based on Tubular Pillar[5]arene Dimers.
    Strilets D; Fa S; Hardiagon A; Baaden M; Ogoshi T; Barboiu M
    Angew Chem Int Ed Engl; 2020 Dec; 59(51):23213-23219. PubMed ID: 32905651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oriented chiral water wires in artificial transmembrane channels.
    Kocsis I; Sorci M; Vanselous H; Murail S; Sanders SE; Licsandru E; Legrand YM; van der Lee A; Baaden M; Petersen PB; Belfort G; Barboiu M
    Sci Adv; 2018 Mar; 4(3):eaao5603. PubMed ID: 29582016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superpermeable Atomic-Thin Graphene Membranes with High Selectivity.
    Wei G; Quan X; Chen S; Yu H
    ACS Nano; 2017 Feb; 11(2):1920-1926. PubMed ID: 28169524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.