These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30001108)

  • 21. Improving the anti-icing/frosting property of a nanostructured superhydrophobic surface by the optimum selection of a surface modifier.
    Zuo Z; Liao R; Song X; Zhao X; Yuan Y
    RSC Adv; 2018 May; 8(36):19906-19916. PubMed ID: 35541649
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamics of ice nucleation on water repellent surfaces.
    Alizadeh A; Yamada M; Li R; Shang W; Otta S; Zhong S; Ge L; Dhinojwala A; Conway KR; Bahadur V; Vinciquerra AJ; Stephens B; Blohm ML
    Langmuir; 2012 Feb; 28(6):3180-6. PubMed ID: 22235939
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of Latent Heat Released by Freezing Droplets during Frost Wave Propagation.
    Chavan S; Park D; Singla N; Sokalski P; Boyina K; Miljkovic N
    Langmuir; 2018 Jun; 34(22):6636-6644. PubMed ID: 29733606
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of delayed frost growth on superhydrophobic surfaces with jumping condensates: more than interdrop freezing.
    Hao Q; Pang Y; Zhao Y; Zhang J; Feng J; Yao S
    Langmuir; 2014 Dec; 30(51):15416-22. PubMed ID: 25466489
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of frost formation on the ice adhesion of micro-nano structure metal surface by femtosecond laser.
    Liu Z; Ye F; Tao H; Lin J
    J Colloid Interface Sci; 2021 Dec; 603():233-242. PubMed ID: 34186400
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Durable and Scalable Candle Soot Icephobic Coating with Nucleation and Fracture Mechanism.
    Jamil MI; Zhan X; Chen F; Cheng D; Zhang Q
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31532-31542. PubMed ID: 31368296
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low Ice Adhesion on Nano-Textured Superhydrophobic Surfaces under Supersaturated Conditions.
    Bengaluru Subramanyam S; Kondrashov V; Rühe J; Varanasi KK
    ACS Appl Mater Interfaces; 2016 May; 8(20):12583-7. PubMed ID: 27150450
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pore condensation and freezing is responsible for ice formation below water saturation for porous particles.
    David RO; Marcolli C; Fahrni J; Qiu Y; Perez Sirkin YA; Molinero V; Mahrt F; Brühwiler D; Lohmann U; Kanji ZA
    Proc Natl Acad Sci U S A; 2019 Apr; 116(17):8184-8189. PubMed ID: 30948638
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How Frost Forms and Grows on Lubricated Micro- and Nanostructured Surfaces.
    Hauer L; Wong WSY; Donadei V; Hegner KI; Kondic L; Vollmer D
    ACS Nano; 2021 Mar; 15(3):4658-4668. PubMed ID: 33647197
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Delayed Frost Growth on Nanoporous Microstructured Surfaces Utilizing Jumping and Sweeping Condensates.
    Mohammadian B; Annavarapu RK; Raiyan A; Nemani SK; Kim S; Wang M; Sojoudi H
    Langmuir; 2020 Jun; 36(24):6635-6650. PubMed ID: 32418428
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spontaneous self-dislodging of freezing water droplets and the role of wettability.
    Graeber G; Schutzius TM; Eghlidi H; Poulikakos D
    Proc Natl Acad Sci U S A; 2017 Oct; 114(42):11040-11045. PubMed ID: 28973877
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Delaying Frost Formation by Controlling Surface Chemistry of Carbon Nanotube-Coated Steel Surfaces.
    Zhang Y; Klittich MR; Gao M; Dhinojwala A
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6512-6519. PubMed ID: 28117579
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Air Cushion Convection Inhibiting Icing of Self-Cleaning Surfaces.
    Yang Q; Luo Z; Jiang F; Luo Y; Tan S; Lu Z; Zhang Z; Liu W
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):29169-29178. PubMed ID: 27700030
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Condensation Frosting on Micropillar Surfaces - Effect of Microscale Roughness on Ice Propagation.
    Shen Y; Zou H; Wang S
    Langmuir; 2020 Nov; 36(45):13563-13574. PubMed ID: 33146014
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heterogeneous nucleation of ice on carbon surfaces.
    Lupi L; Hudait A; Molinero V
    J Am Chem Soc; 2014 Feb; 136(8):3156-64. PubMed ID: 24495074
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance.
    Kim P; Wong TS; Alvarenga J; Kreder MJ; Adorno-Martinez WE; Aizenberg J
    ACS Nano; 2012 Aug; 6(8):6569-77. PubMed ID: 22680067
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Condensation and freezing of droplets on superhydrophobic surfaces.
    Oberli L; Caruso D; Hall C; Fabretto M; Murphy PJ; Evans D
    Adv Colloid Interface Sci; 2014 Aug; 210():47-57. PubMed ID: 24200089
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wetting hysteresis induced by temperature changes: Supercooled water on hydrophobic surfaces.
    Heydari G; Sedighi Moghaddam M; Tuominen M; Fielden M; Haapanen J; Mäkelä JM; Claesson PM
    J Colloid Interface Sci; 2016 Apr; 468():21-33. PubMed ID: 26821148
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transparent, Photothermal, and Icephobic Surfaces via Layer-by-Layer Assembly.
    Wu S; Liang Z; Li Y; Chay S; He Z; Tan S; Wang J; Zhu X; He X
    Adv Sci (Weinh); 2022 May; 9(14):e2105986. PubMed ID: 35486005
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metasurfaces Leveraging Solar Energy for Icephobicity.
    Mitridis E; Schutzius TM; Sicher A; Hail CU; Eghlidi H; Poulikakos D
    ACS Nano; 2018 Jul; 12(7):7009-7017. PubMed ID: 29932625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.