These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 30001116)

  • 1. Plasmonic Hot-Carrier-Mediated Tunable Photochemical Reactions.
    Zhang Y; Nelson T; Tretiak S; Guo H; Schatz GC
    ACS Nano; 2018 Aug; 12(8):8415-8422. PubMed ID: 30001116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of Charge Transfer from Plasmonic Nanostructures to Chemically Attached Materials.
    Boerigter C; Aslam U; Linic S
    ACS Nano; 2016 Jun; 10(6):6108-15. PubMed ID: 27268233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon-Mediated Hydrogen Dissociation with Symmetry Tunability.
    Guo A; Lu Y; Song Y; Cao Y; Du R; Li J; Fu Z; Yan L; Zhang Z
    J Phys Chem Lett; 2023 Jun; 14(25):5748-5753. PubMed ID: 37319379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directional Damping of Plasmons at Metal-Semiconductor Interfaces.
    Liu G; Lou Y; Zhao Y; Burda C
    Acc Chem Res; 2022 Jul; 55(13):1845-1856. PubMed ID: 35696292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Al@TiO
    Bayles A; Tian S; Zhou J; Yuan L; Yuan Y; Jacobson CR; Farr C; Zhang M; Swearer DF; Solti D; Lou M; Everitt HO; Nordlander P; Halas NJ
    ACS Nano; 2022 Apr; 16(4):5839-5850. PubMed ID: 35293740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial Separation of Plasmonic Hot-Electron Generation and a Hydrodehalogenation Reaction Center Using a DNA Wire.
    Kogikoski S; Dutta A; Bald I
    ACS Nano; 2021 Dec; 15(12):20562-20573. PubMed ID: 34875168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface plasmon polariton-induced hot carrier generation for photocatalysis.
    Ahn W; Ratchford DC; Pehrsson PE; Simpkins BS
    Nanoscale; 2017 Mar; 9(9):3010-3022. PubMed ID: 28182184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining plasmonic hot-carrier energy distributions via single-molecule transport measurements.
    Reddy H; Wang K; Kudyshev Z; Zhu L; Yan S; Vezzoli A; Higgins SJ; Gavini V; Boltasseva A; Reddy P; Shalaev VM; Meyhofer E
    Science; 2020 Jul; 369(6502):423-426. PubMed ID: 32499398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying Wavelength-Dependent Plasmonic Hot Carrier Energy Distributions at Metal/Semiconductor Interfaces.
    Yu Y; Wijesekara KD; Xi X; Willets KA
    ACS Nano; 2019 Mar; 13(3):3629-3637. PubMed ID: 30807695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of molecular structure on the coupling strength to a plasmonic nanoparticle and hot carrier generation.
    Zaier R; Bancerek M; Kluczyk-Korch K; Antosiewicz TJ
    Nanoscale; 2024 Jun; 16(25):12163-12173. PubMed ID: 38835327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How Does a Plasmon-Induced Hot Charge Carrier Break a C-C Bond?
    Huh H; Trinh HD; Lee D; Yoon S
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24715-24724. PubMed ID: 31192584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hot-Carrier Generation in Plasmonic Nanoparticles: The Importance of Atomic Structure.
    Rossi TP; Erhart P; Kuisma M
    ACS Nano; 2020 Aug; 14(8):9963-9971. PubMed ID: 32687311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmon-induced hot electron transfer in AgNW@TiO
    Cheng J; Li Y; Plissonneau M; Li J; Li J; Chen R; Tang Z; Pautrot-d'Alençon L; He T; Tréguer-Delapierre M; Delville MH
    Sci Rep; 2018 Sep; 8(1):14136. PubMed ID: 30237426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic Insights into Photocatalyzed H
    Wu Q; Zhou L; Schatz GC; Zhang Y; Guo H
    J Am Chem Soc; 2020 Jul; 142(30):13090-13101. PubMed ID: 32615759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling Hot Charge Carrier Transfer in Monolithic AlSiAl Heterostructures for Plasmonic On-Chip Energy Harvesting.
    Song Z; Sistani M; Schwingshandl F; Lugstein A
    Small; 2023 Sep; 19(36):e2301055. PubMed ID: 37162487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From Optical to Chemical Hot Spots in Plasmonics.
    Gargiulo J; Berté R; Li Y; Maier SA; Cortés E
    Acc Chem Res; 2019 Sep; 52(9):2525-2535. PubMed ID: 31430119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aluminum Nanocrystals as a Plasmonic Photocatalyst for Hydrogen Dissociation.
    Zhou L; Zhang C; McClain MJ; Manjavacas A; Krauter CM; Tian S; Berg F; Everitt HO; Carter EA; Nordlander P; Halas NJ
    Nano Lett; 2016 Feb; 16(2):1478-84. PubMed ID: 26799677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic Photoelectrochemistry: In View of Hot Carriers.
    Zhang Y; Guo W; Zhang Y; Wei WD
    Adv Mater; 2021 Nov; 33(46):e2006654. PubMed ID: 33977588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmon resonances in semiconductor materials for detecting photocatalysis at the single-particle level.
    Yan J; Lin Z; Ma C; Zheng Z; Liu P; Yang G
    Nanoscale; 2016 Aug; 8(32):15001-7. PubMed ID: 27469299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.