BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 30001168)

  • 1. Lack of p11 expression facilitates acidity-sensing function of TASK1 channels in mouse adrenal medullary cells.
    Inoue M; Matsuoka H; Lesage F; Harada K
    FASEB J; 2019 Jan; 33(1):455-468. PubMed ID: 30001168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of p11 and Heteromeric TASK Channels in Rat Carotid Body Glomus Cells and Nerve Growth Factor-differentiated PC12 Cells.
    Matsuoka H; Pokorski M; Harada K; Yoshimura R; Inoue M
    J Histochem Cytochem; 2020 Oct; 68(10):679-690. PubMed ID: 32886017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of p11 and heteromeric TASK channels in mouse adrenal cortical cells and H295R cells.
    Matsuoka H; Harada K; Sugawara A; Kim D; Inoue M
    Acta Histochem; 2022 Jul; 124(5):151898. PubMed ID: 35526370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nerve growth factor-induced endocytosis of TWIK-related acid-sensitive K⁺ 1 channels in adrenal medullary cells and PC12 cells.
    Matsuoka H; Harada K; Nakamura J; Inoue M
    Pflugers Arch; 2013 Jul; 465(7):1051-64. PubMed ID: 23377568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mechanism for muscarinic M
    Matsuoka H; Inoue M
    J Physiol; 2017 Nov; 595(22):6851-6867. PubMed ID: 28944482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TASK channels: channelopathies, trafficking, and receptor-mediated inhibition.
    Inoue M; Matsuoka H; Harada K; Mugishima G; Kameyama M
    Pflugers Arch; 2020 Jul; 472(7):911-922. PubMed ID: 32472332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of TASK1-like channels by muscarinic receptor stimulation in rat adrenal medullary cells.
    Inoue M; Harada K; Matsuoka H; Sata T; Warashina A
    J Neurochem; 2008 Aug; 106(4):1804-14. PubMed ID: 18554317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TASK1 and TASK3 potassium channels: determinants of aldosterone secretion and adrenocortical zonation.
    Bandulik S; Penton D; Barhanin J; Warth R
    Horm Metab Res; 2010 Jun; 42(6):450-7. PubMed ID: 20049674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences among muscarinic agonists in M
    Inoue M; Harada K; Matsui M; Matsuoka H
    Eur J Pharmacol; 2019 Jan; 843():104-112. PubMed ID: 30452911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein kinase G dynamically modulates TASK1-mediated leak K+ currents in cholinergic neurons of the basal forebrain.
    Toyoda H; Saito M; Okazawa M; Hirao K; Sato H; Abe H; Takada K; Funabiki K; Takada M; Kaneko T; Kang Y
    J Neurosci; 2010 Apr; 30(16):5677-89. PubMed ID: 20410120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscarinic receptor stimulation induces TASK1 channel endocytosis through a PKC-Pyk2-Src pathway in PC12 cells.
    Matsuoka H; Harada K; Mashima K; Inoue M
    Cell Signal; 2020 Jan; 65():109434. PubMed ID: 31676368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a region in the TASK3 two pore domain potassium channel that is critical for its blockade by methanandamide.
    Veale EL; Buswell R; Clarke CE; Mathie A
    Br J Pharmacol; 2007 Nov; 152(5):778-86. PubMed ID: 17828294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that TASK1 channels contribute to the background current in AH/type II neurons of the guinea-pig intestine.
    Matsuyama H; Nguyen TV; Hunne B; Thacker M; Needham K; McHugh D; Furness JB
    Neuroscience; 2008 Aug; 155(3):738-50. PubMed ID: 18590799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carotid body chemosensory responses in mice deficient of TASK channels.
    Ortega-Sáenz P; Levitsky KL; Marcos-Almaraz MT; Bonilla-Henao V; Pascual A; López-Barneo J
    J Gen Physiol; 2010 Apr; 135(4):379-92. PubMed ID: 20351062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sp1-regulated expression of p11 contributes to motor neuron degeneration by membrane insertion of TASK1.
    García-Morales V; Rodríguez-Bey G; Gómez-Pérez L; Domínguez-Vías G; González-Forero D; Portillo F; Campos-Caro A; Gento-Caro Á; Issaoui N; Soler RM; Garcera A; Moreno-López B
    Nat Commun; 2019 Aug; 10(1):3784. PubMed ID: 31439839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Invalidation of TASK1 potassium channels disrupts adrenal gland zonation and mineralocorticoid homeostasis.
    Heitzmann D; Derand R; Jungbauer S; Bandulik S; Sterner C; Schweda F; El Wakil A; Lalli E; Guy N; Mengual R; Reichold M; Tegtmeier I; Bendahhou S; Gomez-Sanchez CE; Aller MI; Wisden W; Weber A; Lesage F; Warth R; Barhanin J
    EMBO J; 2008 Jan; 27(1):179-87. PubMed ID: 18034154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms and roles of muscarinic activation in guinea-pig adrenal medullary cells.
    Inoue M; Harada K; Matsuoka H; Nakamura J; Warashina A
    Am J Physiol Cell Physiol; 2012 Sep; 303(6):C635-44. PubMed ID: 22744007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterodimerization of two pore domain K+ channel TASK1 and TALK2 in living heterologous expression systems.
    Suzuki Y; Tsutsumi K; Miyamoto T; Yamamura H; Imaizumi Y
    PLoS One; 2017; 12(10):e0186252. PubMed ID: 29016681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in the expression of the potassium channels TASK1, TASK3 and TRESK in a rat model of oral squamous cell carcinoma and their relation to malignancy.
    Zavala WD; Foscolo MR; Kunda PE; Cavicchia JC; Acosta CG
    Arch Oral Biol; 2019 Apr; 100():75-85. PubMed ID: 30818127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of TASK1 in aldosterone production and its expression in normal adrenal and aldosterone-producing adenomas.
    Nogueira EF; Gerry D; Mantero F; Mariniello B; Rainey WE
    Clin Endocrinol (Oxf); 2010 Jul; 73(1):22-9. PubMed ID: 19878209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.