These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 30001321)

  • 1. Use of an anionic collagen matrix made from bovine intestinal serosa for in vivo repair of cranial defects.
    Pettian MS; Plepis AMG; Martins VDCA; Dos Santos GR; Pinto CAL; Galdeano EA; Calegari ARA; de Moraes CA; Cunha MRD
    PLoS One; 2018; 13(7):e0197806. PubMed ID: 30001321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility study of collagen membranes derived from bovine pericardium and intestinal serosa for the repair of cranial defects in ovariectomised rats.
    Hirata HH; Munhoz MA; Plepis AM; Martins VC; Santos GR; Galdeano EA; Cunha MR
    Injury; 2015 Jul; 46(7):1215-22. PubMed ID: 25920373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vivo Biological Behavior of Polymer Scaffolds of Natural Origin in the Bone Repair Process.
    Cunha FB; Pomini KT; Plepis AMG; Martins VDCA; Machado EG; de Moraes R; Munhoz MAES; Machado MVR; Duarte MAH; Alcalde MP; Buchaim DV; Buchaim RL; Fernandes VAR; Pereira ESBM; Pelegrine AA; Cunha MRD
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33805847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of collagen/chitosan sponges mineralized with hydroxyapatite for the repair of cranial defects in rats.
    Munhoz MAS; Hirata HH; Plepis AMG; Martins VCA; Cunha MR
    Injury; 2018 Dec; 49(12):2154-2160. PubMed ID: 30268514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the combination of low-level laser therapy and anionic polymer membranes on bone repair.
    Dos Santos DA; de Guzzi Plepis AM; da Conceição Amaro Martins V; Cardoso GBC; Santos AR; Iatecola A; Andrade TN; Monteiro FM; Calegari ARA; Chacon EL; Cunha MR
    Lasers Med Sci; 2020 Jun; 35(4):813-821. PubMed ID: 31463820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The local administration of parathyroid hormone encourages the healing of bone defects in the rat calvaria: Micro-computed tomography, histological and histomorphometric evaluation.
    Auersvald CM; Santos FR; Nakano MM; Leoni GB; de Sousa Neto MD; Scariot R; Giovanini AF; Deliberador TM
    Arch Oral Biol; 2017 Jul; 79():14-19. PubMed ID: 28282513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guided bone regeneration produced by new mineralized and reticulated collagen membranes in critical-sized rat calvarial defects.
    Veríssimo DM; Leitão RF; Figueiró SD; Góes JC; Lima V; Silveira CO; Brito GA
    Exp Biol Med (Maywood); 2015 Feb; 240(2):175-84. PubMed ID: 25245073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of defect dimensions on periodontal wound healing/regeneration in intrabony defects following implantation of a bovine bone biomaterial and provisions for guided tissue regeneration: an experimental study in the dog.
    Stavropoulos A; Wikesjö UM
    J Clin Periodontol; 2010 Jun; 37(6):534-43. PubMed ID: 20507377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of recombinant human bone morphogenetic protein-2 on bone regeneration in large defects of the growing canine skull after dura mater replacement with a dura mater substitute.
    He D; Genecov DG; Herbert M; Barcelo R; Elsalanty ME; Weprin BE; Opperman LA
    J Neurosurg; 2010 Feb; 112(2):319-28. PubMed ID: 19267528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteocalcin immunohistochemical expression during repair of critical-sized bone defects treated with subcutaneous adipose tissue in rat and rabbit animal model.
    Verbicaro T; Giovanini AF; Zielak JC; Baratto Filho F; de Araujo MR; Deliberador TM
    Braz Dent J; 2013; 24(6):559-64. PubMed ID: 24474349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioactive cell-derived matrices combined with polymer mesh scaffold for osteogenesis and bone healing.
    Kim IG; Hwang MP; Du P; Ko J; Ha CW; Do SH; Park K
    Biomaterials; 2015 May; 50():75-86. PubMed ID: 25736498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue dynamics and regenerative outcome in two resorbable non-cross-linked collagen membranes for guided bone regeneration: A preclinical molecular and histological study in vivo.
    Omar O; Dahlin A; Gasser A; Dahlin C
    Clin Oral Implants Res; 2018 Jan; 29(1):7-19. PubMed ID: 28703398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mineralized Biomaterials Mediated Repair of Bone Defects Through Endogenous Cells.
    González Díaz EC; Shih YV; Nakasaki M; Liu M; Varghese S
    Tissue Eng Part A; 2018 Jul; 24(13-14):1148-1156. PubMed ID: 29368582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue engineering for bone regeneration using differentiated alveolar bone cells in collagen scaffolds.
    Xiao Y; Qian H; Young WG; Bartold PM
    Tissue Eng; 2003 Dec; 9(6):1167-77. PubMed ID: 14670104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxysterols enhance osteoblast differentiation in vitro and bone healing in vivo.
    Aghaloo TL; Amantea CM; Cowan CM; Richardson JA; Wu BM; Parhami F; Tetradis S
    J Orthop Res; 2007 Nov; 25(11):1488-97. PubMed ID: 17568450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local delivery of COMP-angiopoietin 1 accelerates new bone formation in rat calvarial defects.
    Lim SS; Kook SH; Bhattarai G; Cho ES; Seo YK; Lee JC
    J Biomed Mater Res A; 2015 Sep; 103(9):2942-51. PubMed ID: 25727390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of recombinant human bone morphogenic protein 9 (rhBMP9) loaded onto bone grafts versus barrier membranes on new bone formation in a rabbit calvarial defect model.
    Fujioka-Kobayashi M; Kobayashi E; Schaller B; Mottini M; Miron RJ; Saulacic N
    J Biomed Mater Res A; 2017 Oct; 105(10):2655-2661. PubMed ID: 28556436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation pattern of a porcine collagen membrane in an in vivo model of guided bone regeneration.
    Calciolari E; Ravanetti F; Strange A; Mardas N; Bozec L; Cacchioli A; Kostomitsopoulos N; Donos N
    J Periodontal Res; 2018 Jun; 53(3):430-439. PubMed ID: 29446096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocomposite cryogels as tissue-engineered biomaterials for regeneration of critical-sized cranial bone defects.
    Mishra R; Goel SK; Gupta KC; Kumar A
    Tissue Eng Part A; 2014 Feb; 20(3-4):751-62. PubMed ID: 24147880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repair of critical size rat calvarial defects using extracellular matrix protein gels.
    Sweeney TM; Opperman LA; Persing JA; Ogle RC
    J Neurosurg; 1995 Oct; 83(4):710-5. PubMed ID: 7545744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.