These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 30001507)

  • 1. Internally Generated Predictions Enhance Neural and Behavioral Detection of Sensory Stimuli in an Electric Fish.
    Enikolopov AG; Abbott LF; Sawtell NB
    Neuron; 2018 Jul; 99(1):135-146.e3. PubMed ID: 30001507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plastic corollary discharge predicts sensory consequences of movements in a cerebellum-like circuit.
    Requarth T; Sawtell NB
    Neuron; 2014 May; 82(4):896-907. PubMed ID: 24853945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural Mechanisms for Predicting the Sensory Consequences of Behavior: Insights from Electrosensory Systems.
    Sawtell NB
    Annu Rev Physiol; 2017 Feb; 79():381-399. PubMed ID: 27813831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensory processing and corollary discharge effects in the mormyromast regions of the mormyrid electrosensory lobe. I. Field potentials, cellular activity in associated structures.
    Bell CC; Grant K; Serrier J
    J Neurophysiol; 1992 Sep; 68(3):843-58. PubMed ID: 1432052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural mechanisms for filtering self-generated sensory signals in cerebellum-like circuits.
    Requarth T; Sawtell NB
    Curr Opin Neurobiol; 2011 Aug; 21(4):602-8. PubMed ID: 21704507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasticity in an electrosensory system. I. General features of a dynamic sensory filter.
    Bastian J
    J Neurophysiol; 1996 Oct; 76(4):2483-96. PubMed ID: 8899621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory processing and corollary discharge effects in mormyromast regions of mormyrid electrosensory lobe. II. Cell types and corollary discharge plasticity.
    Bell CC; Grant K
    J Neurophysiol; 1992 Sep; 68(3):859-75. PubMed ID: 1432053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hormonal coordination of motor output and internal prediction of sensory consequences in an electric fish.
    Fukutomi M; Carlson BA
    Curr Biol; 2023 Aug; 33(16):3350-3359.e4. PubMed ID: 37490922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Storage of a sensory pattern by anti-Hebbian synaptic plasticity in an electric fish.
    Bell CC; Caputi A; Grant K; Serrier J
    Proc Natl Acad Sci U S A; 1993 May; 90(10):4650-4. PubMed ID: 8506312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responses of neurons in the electrosensory lateral line lobe of the weakly electric fish Gnathonemus petersii to simple and complex electrosensory stimuli.
    Goenechea L; von der Emde G
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Nov; 190(11):907-22. PubMed ID: 15349745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A temporal basis for predicting the sensory consequences of motor commands in an electric fish.
    Kennedy A; Wayne G; Kaifosh P; Alviña K; Abbott LF; Sawtell NB
    Nat Neurosci; 2014 Mar; 17(3):416-22. PubMed ID: 24531306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The decoding of electrosensory systems.
    Fortune ES
    Curr Opin Neurobiol; 2006 Aug; 16(4):474-80. PubMed ID: 16837187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalization of learned responses in the mormyrid electrosensory lobe.
    Dempsey C; Abbott LF; Sawtell NB
    Elife; 2019 Mar; 8():. PubMed ID: 30860480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic plasticity in a cerebellum-like structure depends on temporal order.
    Bell CC; Han VZ; Sugawara Y; Grant K
    Nature; 1997 May; 387(6630):278-81. PubMed ID: 9153391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An internal model for canceling self-generated sensory input in freely behaving electric fish.
    Wallach A; Sawtell NB
    Neuron; 2023 Aug; 111(16):2570-2582.e5. PubMed ID: 37321221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling inhibitory plasticity in the electrosensory system of mormyrid electric fish.
    Roberts PD
    J Neurophysiol; 2000 Oct; 84(4):2035-47. PubMed ID: 11024096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensory processing and corollary discharge effects in posterior caudal lobe Purkinje cells in a weakly electric mormyrid fish.
    Alviña K; Sawtell NB
    J Neurophysiol; 2014 Jul; 112(2):328-39. PubMed ID: 24790163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design principles of sensory processing in cerebellum-like structures. Early stage processing of electrosensory and auditory objects.
    Roberts PD; Portfors CV
    Biol Cybern; 2008 Jun; 98(6):491-507. PubMed ID: 18491162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prey capture in the weakly electric fish Apteronotus albifrons: sensory acquisition strategies and electrosensory consequences.
    Nelson ME; Maciver MA
    J Exp Biol; 1999 May; 202(Pt 10):1195-203. PubMed ID: 10210661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebellum-like structures and their implications for cerebellar function.
    Bell CC; Han V; Sawtell NB
    Annu Rev Neurosci; 2008; 31():1-24. PubMed ID: 18275284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.