These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30002498)

  • 1. The energetic behaviour of the human foot across a range of running speeds.
    Kelly LA; Cresswell AG; Farris DJ
    Sci Rep; 2018 Jul; 8(1):10576. PubMed ID: 30002498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shoes alter the spring-like function of the human foot during running.
    Kelly LA; Lichtwark GA; Farris DJ; Cresswell A
    J R Soc Interface; 2016 Jun; 13(119):. PubMed ID: 27307512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Influence of Foot-Strike Technique on the Neuromechanical Function of the Foot.
    Kelly LA; Farris DJ; Lichtwark GA; Cresswell AG
    Med Sci Sports Exerc; 2018 Jan; 50(1):98-108. PubMed ID: 28902682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical function of two ankle extensors in wild turkeys: shifts from energy production to energy absorption during incline versus decline running.
    Gabaldón AM; Nelson FE; Roberts TJ
    J Exp Biol; 2004 Jun; 207(Pt 13):2277-88. PubMed ID: 15159432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle work is biased toward energy generation over dissipation in non-level running.
    Devita P; Janshen L; Rider P; Solnik S; Hortobágyi T
    J Biomech; 2008 Dec; 41(16):3354-9. PubMed ID: 19010471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of habitual foot-strike pattern on the gastrocnemius medialis muscle-tendon interaction and muscle force production during running.
    Swinnen W; Hoogkamer W; Delabastita T; Aeles J; De Groote F; Vanwanseele B
    J Appl Physiol (1985); 2019 Mar; 126(3):708-716. PubMed ID: 30629477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastic energy within the human plantar aponeurosis contributes to arch shortening during the push-off phase of running.
    Wager JC; Challis JH
    J Biomech; 2016 Mar; 49(5):704-709. PubMed ID: 26944691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using the spring-mass model for running: Force-length curves and foot-strike patterns.
    Gill N; Preece SJ; Baker R
    Gait Posture; 2020 Jul; 80():318-323. PubMed ID: 32593101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Running ground reaction forces across footwear conditions are predicted from the motion of two body mass components.
    Udofa AB; Clark KP; Ryan LJ; Weyand PG
    J Appl Physiol (1985); 2019 May; 126(5):1315-1325. PubMed ID: 30763160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The foot is more than a spring: human foot muscles perform work to adapt to the energetic requirements of locomotion.
    Riddick R; Farris DJ; Kelly LA
    J R Soc Interface; 2019 Jan; 16(150):20180680. PubMed ID: 30958152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active regulation of longitudinal arch compression and recoil during walking and running.
    Kelly LA; Lichtwark G; Cresswell AG
    J R Soc Interface; 2015 Jan; 12(102):20141076. PubMed ID: 25551151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Running mechanics and leg muscle activity patterns during early and late acceleration phases of repeated treadmill sprints in male recreational athletes.
    Girard O; Brocherie F; Morin JB; Millet GP; Hansen C
    Eur J Appl Physiol; 2020 Dec; 120(12):2785-2796. PubMed ID: 32980967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy transfer mechanisms as a compensatory strategy in below knee amputee runners.
    Czerniecki JM; Gitter AJ; Beck JC
    J Biomech; 1996 Jun; 29(6):717-22. PubMed ID: 9147968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tendon elastic strain energy in the human ankle plantar-flexors and its role with increased running speed.
    Lai A; Schache AG; Lin YC; Pandy MG
    J Exp Biol; 2014 Sep; 217(Pt 17):3159-68. PubMed ID: 24948642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic foot muscles contribute to elastic energy storage and return in the human foot.
    Kelly LA; Farris DJ; Cresswell AG; Lichtwark GA
    J Appl Physiol (1985); 2019 Jan; 126(1):231-238. PubMed ID: 30462568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing the mechanical function of the foot's arch across steady-state gait modes.
    Davis DJ; Challis JH
    J Biomech; 2023 Apr; 151():111529. PubMed ID: 36913798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The functional importance of human foot muscles for bipedal locomotion.
    Farris DJ; Kelly LA; Cresswell AG; Lichtwark GA
    Proc Natl Acad Sci U S A; 2019 Jan; 116(5):1645-1650. PubMed ID: 30655349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical energy contribution of the metatarsophalangeal joint to running and sprinting.
    Stefanyshyn DJ; Nigg BM
    J Biomech; 1997; 30(11-12):1081-5. PubMed ID: 9456374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The application of ground force explains the energetic cost of running backward and forward.
    Wright S; Weyand PG
    J Exp Biol; 2001 May; 204(Pt 10):1805-15. PubMed ID: 11316501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of Arch Compression and Metatarsophalangeal Joint Dynamics in Modulating Plantar Fascia Strain in Running.
    McDonald KA; Stearne SM; Alderson JA; North I; Pires NJ; Rubenson J
    PLoS One; 2016; 11(4):e0152602. PubMed ID: 27054319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.