These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 30002665)

  • 1. Wild Relatives of Maize, Rice, Cotton, and Soybean: Treasure Troves for Tolerance to Biotic and Abiotic Stresses.
    Mammadov J; Buyyarapu R; Guttikonda SK; Parliament K; Abdurakhmonov IY; Kumpatla SP
    Front Plant Sci; 2018; 9():886. PubMed ID: 30002665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crop Wild Relatives: A Valuable Source of Tolerance to Various Abiotic Stresses.
    Kapazoglou A; Gerakari M; Lazaridi E; Kleftogianni K; Sarri E; Tani E; Bebeli PJ
    Plants (Basel); 2023 Jan; 12(2):. PubMed ID: 36679041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Back into the wild-Apply untapped genetic diversity of wild relatives for crop improvement.
    Zhang H; Mittal N; Leamy LJ; Barazani O; Song BH
    Evol Appl; 2017 Jan; 10(1):5-24. PubMed ID: 28035232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Prospects of gene introgression from crop wild relatives into cultivated lentil for climate change mitigation.
    Rajpal VR; Singh A; Kathpalia R; Thakur RK; Khan MK; Pandey A; Hamurcu M; Raina SN
    Front Plant Sci; 2023; 14():1127239. PubMed ID: 36998696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into the Transcriptomics of Crop Wild Relatives to Unravel the Salinity Stress Adaptive Mechanisms.
    Abdul Aziz M; Masmoudi K
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37372961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indian Wheat Genomics Initiative for Harnessing the Potential of Wheat Germplasm Resources for Breeding Disease-Resistant, Nutrient-Dense, and Climate-Resilient Cultivars.
    Kumar S; Jacob SR; Mir RR; Vikas VK; Kulwal P; Chandra T; Kaur S; Kumar U; Kumar S; Sharma S; Singh R; Prasad S; Singh AM; Singh AK; Kumari J; Saharan MS; Bhardwaj SC; Prasad M; Kalia S; Singh K
    Front Genet; 2022; 13():834366. PubMed ID: 35846116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From Evolution to Revolution: Accelerating Crop Domestication through Genome Editing.
    Kumar K; Mandal SN; Pradhan B; Kaur P; Kaur K; Neelam K
    Plant Cell Physiol; 2022 Nov; 63(11):1607-1623. PubMed ID: 36018059
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Razzaq A; Saleem F; Wani SH; Abdelmohsen SAM; Alyousef HA; Abdelbacki AMM; Alkallas FH; Tamam N; Elansary HO
    Front Plant Sci; 2021; 12():681367. PubMed ID: 34603347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review of Crop Wild Relative Conservation and Use in West Asia and North Africa.
    Maxted N; Magos Brehm J; Abulaila K; Al-Zein MS; Kehel Z; Yazbek M
    Plants (Basel); 2024 May; 13(10):. PubMed ID: 38794414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Back to the Wild: On a Quest for Donors Toward Salinity Tolerant Rice.
    Solis CA; Yong MT; Vinarao R; Jena K; Holford P; Shabala L; Zhou M; Shabala S; Chen ZH
    Front Plant Sci; 2020; 11():323. PubMed ID: 32265970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilization of crop wild relatives for biotic and abiotic stress management in Indian mustard [
    Verma S; Dubey N; Singh KH; Parmar N; Singh L; Sharma D; Rana D; Thakur K; Vaidya D; Thakur AK
    Front Plant Sci; 2023; 14():1277922. PubMed ID: 37954999
    [No Abstract]   [Full Text] [Related]  

  • 13. Distribution, genetic diversity and potential spatiotemporal scale of alien gene flow in crop wild relatives of rice (Oryza spp.) in Colombia.
    Thomas E; Tovar E; Villafañe C; Bocanegra JL; Moreno R
    Rice (N Y); 2017 Dec; 10(1):13. PubMed ID: 28421550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How Could the Use of Crop Wild Relatives in Breeding Increase the Adaptation of Crops to Marginal Environments?
    Renzi JP; Coyne CJ; Berger J; von Wettberg E; Nelson M; Ureta S; Hernández F; Smýkal P; Brus J
    Front Plant Sci; 2022; 13():886162. PubMed ID: 35783966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies for utilization of crop wild relatives in plant breeding programs.
    Kashyap A; Garg P; Tanwar K; Sharma J; Gupta NC; Ha PTT; Bhattacharya RC; Mason AS; Rao M
    Theor Appl Genet; 2022 Dec; 135(12):4151-4167. PubMed ID: 36136128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Untapped Genetic Reservoir: The Past, Current, and Future Applications of the Wild Soybean (
    Kofsky J; Zhang H; Song BH
    Front Plant Sci; 2018; 9():949. PubMed ID: 30038633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants.
    Kujur A; Saxena MS; Bajaj D; Laxmi ; Parida SK
    J Biosci; 2013 Dec; 38(5):971-87. PubMed ID: 24296899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breeding crops by design for future agriculture.
    Li C
    J Zhejiang Univ Sci B; 2020 Jun; 21(6):423-425. PubMed ID: 32478489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prospects of Feral Crop De Novo Redomestication.
    Pisias MT; Bakala HS; McAlvay AC; Mabry ME; Birchler JA; Yang B; Pires JC
    Plant Cell Physiol; 2022 Nov; 63(11):1641-1653. PubMed ID: 35639623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of CRISPR/Cas system in cereal improvement for biotic and abiotic stress tolerance.
    Maharajan T; Krishna TPA; Rakkammal K; Ceasar SA; Ramesh M
    Planta; 2022 Nov; 256(6):106. PubMed ID: 36326904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.