BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 300035)

  • 1. Effect of harmaline on sodium transport in Rana esculenta skin.
    Ehrenfeld J; Garcia-Romeu F
    Br J Pharmacol; 1977 Jan; 59(1):115-21. PubMed ID: 300035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The effect of harmaline on sodium transport across isolated Rana esculents skin and Astacus leptodactylus branchiae].
    Ehrenfeld J; Garcia-Romeu F
    C R Acad Hebd Seances Acad Sci D; 1975 Sep; 281(9):547-50. PubMed ID: 813900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vasopressin-like effects of a hallucinogenic drug--harmaline--on sodium and water transport.
    de Sousa RC; Grosso A
    J Membr Biol; 1978 Apr; 40(1):77-94. PubMed ID: 418180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chloride transport in isolated skin of Rana esculenta.
    Schneider W
    Pflugers Arch; 1975; 355(2):107-24. PubMed ID: 1080271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Persistence of an aldosterone influence on active sodium transport upon exposure of frog skin to ouabain.
    Crabbé J; Decoene A
    Arch Int Physiol Biochim; 1974; 82(2):343-6. PubMed ID: 4135877
    [No Abstract]   [Full Text] [Related]  

  • 6. Differential effects of harmaline and ouabain on intestinal sodium, phenylalanine and beta-methyl-glucoside transport.
    Sepúlveda FV; Buclon M; Robinson JW
    Naunyn Schmiedebergs Arch Pharmacol; 1976 Dec; 295(3):231-6. PubMed ID: 138095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanism of action of harmaline on renal solute transport.
    Samarzija I; Kinne-Saffran E; Baumann K; Frömter E
    Pflugers Arch; 1977 Mar; 368(1-2):83-8. PubMed ID: 140366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delayed voltage responses to fast changes of (Na) 0 at the outer surface of frog skin epithelium.
    Fuchs W; Gebhardt U; Lindemann B
    Biomembranes; 1972; 3():483-98. PubMed ID: 4542294
    [No Abstract]   [Full Text] [Related]  

  • 9. Kinetics of the co-transport of sodium and phenylalanine in the guinea-pig samll intestine. III - Influence of harmaline on sodium and phenylalanine fluxes.
    Sepúlveda EV; Robinson JW
    J Physiol (Paris); 1978 Dec; 74(6):585-90. PubMed ID: 745141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium uptake by frog skin and its modification by inhibitors of transepithelial sodium transport.
    Erlij D; Smith MW
    J Physiol; 1973 Jan; 228(1):221-39. PubMed ID: 4539864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen consumption by frog skin and its isolated epithelial layers as a function of their sodium-transporting activity.
    Noé G; Michotte A; Crabbé J
    Biochim Biophys Acta; 1977 Aug; 461(2):231-8. PubMed ID: 302122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influx and efflux of sodium at the outer surface of frog skin.
    Rick R; Dörge A; Nagel W
    J Membr Biol; 1975; 22(2):183-96. PubMed ID: 1079878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New characteristics of harmaline inhibition of intestinal transport systems.
    Sepúlveda FV; Robinson JW
    Naunyn Schmiedebergs Arch Pharmacol; 1975; 291(2):201-12. PubMed ID: 1059879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of harmaline on unidirectional potassium fluxes and ouabain binding in renal cell cultures.
    Becker JH; Willis JS
    Biochim Biophys Acta; 1983 Jan; 727(1):144-50. PubMed ID: 6824648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling between chloride absorption and base excretion in isolated skin of Rana esculenta.
    Ehrenfeld J; Garcia-Romeu F
    Am J Physiol; 1978 Jul; 235(1):F33-9. PubMed ID: 307916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harmaline distribution in single muscle fibres and the inhibition of sodium efflux.
    Lea TJ; Ashley CC
    Biochim Biophys Acta; 1981 Jun; 644(1):74-81. PubMed ID: 7260069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy consumption of active sodium transport in isolated frog skin.
    Sarkadi B; Schubert A
    Acta Biochim Biophys Acad Sci Hung; 1972; 7(4):367-76. PubMed ID: 4546801
    [No Abstract]   [Full Text] [Related]  

  • 18. The effects of harmaline on sodium transport in human erythrocytes: evidence in favor of action at interior sodium-sensitive sites.
    Dunn MJ; Hunt W
    J Pharmacol Exp Ther; 1975 Jun; 193(3):903-9. PubMed ID: 1151739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harmaline inhibition of Na-dependent transport in renal microvillus membrane vesicles.
    Aronson PS; Bounds SE
    Am J Physiol; 1980 Mar; 238(3):F210-7. PubMed ID: 7369363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Moulting in Rana esculenta: development of mitochondria-rich cells, morphological changes of the epithelium and sodium transport.
    Masoni A; Garcia-Romeu F
    Cell Tissue Res; 1979 Mar; 197(1):23-38. PubMed ID: 313252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.