These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 30003643)
1. Forecasting effects of tree species reintroduction strategies on carbon stocks in a future without historical analog. Gustafson EJ; Sturtevant BR; de Bruijn AMG; Lichti N; Jacobs DF; Kashian DM; Miranda BR; Townsend PA Glob Chang Biol; 2018 Nov; 24(11):5500-5517. PubMed ID: 30003643 [TBL] [Abstract][Full Text] [Related]
2. Traditional fire use impact in the aboveground carbon stock of the chestnut forests of Central Spain and its implications for prescribed burning. Seijo F; Cespedes B; Zavala G Sci Total Environ; 2018 Jun; 625():1405-1414. PubMed ID: 29996437 [TBL] [Abstract][Full Text] [Related]
3. Leaf physiology and biomass allocation of backcross hybrid American chestnut (Castanea dentata) seedlings in response to light and water availability. Brown CE; Mickelbart MV; Jacobs DF Tree Physiol; 2014 Dec; 34(12):1362-75. PubMed ID: 25428828 [TBL] [Abstract][Full Text] [Related]
4. A conceptual framework for restoration of threatened plants: the effective model of American chestnut (Castanea dentata) reintroduction. Jacobs DF; Dalgleish HJ; Nelson CD New Phytol; 2013 Jan; 197(2):378-393. PubMed ID: 23163342 [TBL] [Abstract][Full Text] [Related]
5. [Simulating the effects of climate change and fire disturbance on aboveground biomass of boreal forests in the Great Xing'an Mountains, Northeast China]. Luo X; Wang YL; Zhang JQ Ying Yong Sheng Tai Xue Bao; 2018 Mar; 29(3):713-724. PubMed ID: 29722211 [TBL] [Abstract][Full Text] [Related]
6. Response of Sierra Nevada forests to projected climate-wildfire interactions. Liang S; Hurteau MD; Westerling AL Glob Chang Biol; 2017 May; 23(5):2016-2030. PubMed ID: 27801532 [TBL] [Abstract][Full Text] [Related]
7. The contribution of trees outside forests to national tree biomass and carbon stocks--a comparative study across three continents. Schnell S; Altrell D; Ståhl G; Kleinn C Environ Monit Assess; 2015 Jan; 187(1):4197. PubMed ID: 25514855 [TBL] [Abstract][Full Text] [Related]
8. Carbon dynamics in the future forest: the importance of long-term successional legacy and climate-fire interactions. Loudermilk EL; Scheller RM; Weisberg PJ; Yang J; Dilts TE; Karam SL; Skinner C Glob Chang Biol; 2013 Nov; 19(11):3502-15. PubMed ID: 23821586 [TBL] [Abstract][Full Text] [Related]
9. How disturbance, competition, and dispersal interact to prevent tree range boundaries from keeping pace with climate change. Liang Y; Duveneck MJ; Gustafson EJ; Serra-Diaz JM; Thompson JR Glob Chang Biol; 2018 Jan; 24(1):e335-e351. PubMed ID: 29034990 [TBL] [Abstract][Full Text] [Related]
10. Ectomycorrhizal inoculum potential of northeastern US forest soils for American chestnut restoration: results from field and laboratory bioassays. Dulmer KM; Leduc SD; Horton TR Mycorrhiza; 2014 Jan; 24(1):65-74. PubMed ID: 23857395 [TBL] [Abstract][Full Text] [Related]
11. Shifts in tree functional composition amplify the response of forest biomass to climate. Zhang T; Niinemets Ü; Sheffield J; Lichstein JW Nature; 2018 Apr; 556(7699):99-102. PubMed ID: 29562235 [TBL] [Abstract][Full Text] [Related]
12. Integrating ecophysiology and forest landscape models to improve projections of drought effects under climate change. Gustafson EJ; De Bruijn AM; Pangle RE; Limousin JM; McDowell NG; Pockman WT; Sturtevant BR; Muss JD; Kubiske ME Glob Chang Biol; 2015 Feb; 21(2):843-56. PubMed ID: 25155807 [TBL] [Abstract][Full Text] [Related]
13. Spatial and topographic trends in forest expansion and biomass change, from regional to local scales. Buma B; Barrett TM Glob Chang Biol; 2015 Sep; 21(9):3445-54. PubMed ID: 25726931 [TBL] [Abstract][Full Text] [Related]
14. Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning. Seidl R; Rammer W; Spies TA Ecol Appl; 2014 Dec; 24(8):2063-2077. PubMed ID: 27053913 [TBL] [Abstract][Full Text] [Related]
15. Forest restoration in a mixed-ownership landscape under climate change. Ravenscroft C; Scheller RM; Mladenoff DJ; White MA Ecol Appl; 2010 Mar; 20(2):327-46. PubMed ID: 20405791 [TBL] [Abstract][Full Text] [Related]
16. The influence of land use and climate change on forest biomass and composition in Massachusetts, USA. Thompson JR; Foster DR; Scheller R; Kittredge D Ecol Appl; 2011 Oct; 21(7):2425-44. PubMed ID: 22073633 [TBL] [Abstract][Full Text] [Related]
17. Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Ayres MP; Lombardero MJ Sci Total Environ; 2000 Nov; 262(3):263-86. PubMed ID: 11087032 [TBL] [Abstract][Full Text] [Related]
18. Aboveground carbon sequestration in dry temperate forests varies with climate not fire regime. Gordon CE; Bendall ER; Stares MG; Collins L; Bradstock RA Glob Chang Biol; 2018 Sep; 24(9):4280-4292. PubMed ID: 29855108 [TBL] [Abstract][Full Text] [Related]
19. Temperate forest fragments maintain aboveground carbon stocks out to the forest edge despite changes in community composition. Ziter C; Bennett EM; Gonzalez A Oecologia; 2014 Nov; 176(3):893-902. PubMed ID: 25185776 [TBL] [Abstract][Full Text] [Related]
20. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Jump AS; Ruiz-Benito P; Greenwood S; Allen CD; Kitzberger T; Fensham R; Martínez-Vilalta J; Lloret F Glob Chang Biol; 2017 Sep; 23(9):3742-3757. PubMed ID: 28135022 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]